Abstract

The gauge-fixed action of a ‘spacetime-filling’ D3-brane with dilaton-axion coupling is formulated in N=1 superspace. We investigate its symmetries by paying special attention to a possible non-linearly realized extra supersymmetry, and emphasize the need of a linear superfield coupled to an abelian Chern-Simons superfield to represent a dilaton-axion supermultiplet in the off-shell manifestly supersymmetric approach.
1 Introduction

The supersymmetric D-brane actions with local fermionic kappa symmetry were constructed in ref. [1]. When the kappa-symmetry is fixed, half of supersymmetry is spontaneously broken, whereas the fermionic superpartner (with respect to unbroken half of supersymmetry) of the $U(1)$ gauge field in the D-brane worldvolume can be identified with the Goldstone fermion. The most relevant part of the gauge-fixed D-brane action is given by a supersymmetric Born-Infeld (BI) action [1]. Gauge-fixing results in the D-brane actions whose all supersymmetries are non-linearly realized, i.e. non-manifest. Unbroken supersymmetries can sometimes be made manifest by using superspace [2, 3].

The electric-magnetic self-duality of the BI action can be extended to a full $SL(2, \mathbb{Z})$ duality in the case of a gauge-fixed ‘spacetime-filling’ D3-brane with axion-dilaton coupling [4]. This feature can be made manifest when considering the D3-brane action as the double dimensionally reduced M5-brane action on a 2-torus [5]. The dilaton-axion can be identified with the complex structure of the torus, while the $SL(2, \mathbb{Z})$ self-duality of a D3-brane is then nothing but the modular group of the torus [5]. In this Letter we make manifest the unbroken N=1 supersymmetry of the spacetime-filling D3-brane action with dilaton-axion coupling, and investigate its other relevant symmetries in flat N=1 superspace.

2 N=1 BI action in superspace

In this section we briefly describe the N=1 BI action is superspace, which is the prerequisite to our investigation in sect. 3. The BI action in Minkowski spacetime of signature $\eta = \text{diag}(+, -, -, -)$ is [6]

$$S_{\text{BI}} = \frac{1}{\kappa^2} \int d^4x \sqrt{-\det(\eta_{mn} + \kappa F_{mn})}, \quad (1)$$

where $F_{mn} = \partial_mA_n - \partial_nA_m$, $m,n = 0,1,2,3$, and κ is the dimensional coupling constant ($\kappa = 2\pi\alpha'$ in string theory). The N=1 supersymmetric extension of the action (1) can be interpreted as the Goldstone-Maxwell action associated with partial $(1/2)$ spontaneous supersymmetry breaking, N=2 to N=1, whose Goldstone fermion is photino of a Maxwell (vector) N=1 multiplet with respect to unbroken N=1 supersymmetry [2, 3]. Manifest supersymmetry does not respect the standard form (1) of the BI action. The complex bosonic variable, having the most natural supersymmetric
extention, is given by
\[\omega = \alpha + i\beta , \quad \alpha = \frac{1}{4} F_{mn} F_{mn} , \quad \beta = \frac{1}{4} \tilde{F}_{mn} \tilde{F}_{mn} , \quad \tilde{F}_{mn} = \frac{1}{2} \epsilon^{mnpq} F_{pq} . \] (2)

The BI Lagrangian (1) can be rewritten in terms of \(\omega \) and \(\bar{\omega} \) as
\[L_{BI}(\omega, \bar{\omega}) = L_{\text{free}} + L_{\text{int}}, \]
where the particular structure function \(Y(\omega, \bar{\omega}) \) has been introduced,
\[Y(\omega, \bar{\omega}) = \frac{1}{1 + \frac{\kappa^2}{2} (\omega + \bar{\omega}) + \sqrt{1 + \kappa^2 (\omega + \bar{\omega}) + \frac{\kappa^2}{4} (\omega - \bar{\omega})^2}} . \] (4)

A supersymmetrization of the bosonic BI theory (1) in the form (3) amounts to replacing the field strength \(F_{mn} \) by the N=1 chiral spinor superfield strength \(\tilde{W}_\alpha \), and \(\omega \) by the N=1 chiral scalar superfield \(K = \frac{1}{8} \bar{D}^2 \bar{W}^2 \), viz.
\[S_{sBI} = \frac{1}{4} \left(\int d^4 x d^2 \theta W^2 + \text{h.c.} \right) + \frac{\kappa^2}{8} \int d^4 x d^4 \theta W^2 \bar{W}^2 Y(K, \bar{K}) \] (5)
with the same structure function (4), so that the bosonic terms of eq. (5) exactly reproduce eq. (1). We use the standard notation, \(W^2 = W^\alpha W_\alpha \) and \(\bar{W}^2 = \bar{W}^\alpha \bar{W}_\alpha \), and similarly for the N=1 flat superspace covariant derivatives \(D^\alpha \) and \(\bar{D}_\dot{\alpha} \) with \(\alpha = 1, 2 \) and \(\dot{\alpha} = \dot{1}, \dot{2} \). The gauge superfield strength \(W_\alpha \) obeys the superfield Bianchi identities
\[D_\dot{\alpha} W_\alpha = 0 \quad \text{and} \quad D^\alpha W_\alpha = D^\alpha W_\dot{\alpha} . \] (6)

In the chiral basis the gauge superfield strength reads
\[W_\alpha(x, \theta) = -i \psi_\alpha(x) + \left[\delta_\alpha^\beta D(x) - i (\sigma^{mn})_\alpha^\beta F_{mn}(x) \right] \theta_\beta + \theta^2 (\sigma^m \partial_m)_{\alpha\beta} \bar{\psi}_\beta(x) , \] (7)
where \(\psi_\alpha(x) \) is the fermionic superpartner (photino) of the abelian BI vector field \(A_m \), and \(D \) is the real auxiliary field. In the N=1 super-BI theory (5) setting \(D = 0 \) is consistent with its equations of motion (this is called the ‘auxiliary freedom’ [7]).

The action (5) can be put into the simple ‘non-linear sigma-model’ form [2, 3]
\[S_{sBI} = \int d^4 x d^2 \theta X + \text{h.c.} , \] (8)
whose chiral superfield Lagrangian \(X \) is determined via the recursive relation [2, 3]
\[X + \frac{\kappa^2}{4} X \bar{D}^2 \bar{X} = \frac{1}{4} W^\alpha W_\alpha . \] (9)

The BI action (1) is well-known to be invariant under non-trivial electric-magnetic duality [8]. This means that treating \(F \) as a generic two-form, enforcing the Bianchi
identity, \(dF = 0 \), by means of a Lagrange multiplier (= dual vector potential) in the first-order action, and integrating out \(F \) in favor of the Lagrange multiplier yield the dual action having the same form as eq. (1) in terms of the dual vector potential. The same is true in N=1 superspace for the action (5) when introducing the dual N=1 superfield strength as an N=1 Lagrange multiplier, and integrating over \(W \) in the corresponding first-order action, i.e. after the N=1 superfield Legendre transform [3].

Another highly non-trivial property of eq. (5) is its invariance under the (non-linearly realized and spontaneously broken) second N=1 supersymmetry with rigid spinor parameter \(\eta_\alpha \) [2],

\[
\delta_\eta W_\alpha = \frac{1}{\kappa} \eta_\alpha + \frac{\kappa}{4} D^2 \bar{X} \eta_\alpha + i \kappa (\sigma^m \bar{\eta})_\alpha \partial_m X .
\] (10)
The transformations (10) are consistent with the N=1 Bianchi identities (6), and they realize a supersymmetry algebra. The invariance of the action (5) under the transformations (10) follows from

\[
\delta_\eta X = \frac{1}{\kappa} W^\alpha \eta_\alpha = \text{total derivative}.
\]

To make manifest the hidden second supersymmetry of the the N=1 BI theory, one can reformulate it in the formalism of non-linear realizations [9]. The Goldstone superfield \(\Psi \) having the standard transformation law in the chiral version of the non-linearly realized N=2 supersymmetry [10], \(\delta_\eta \Psi = \frac{1}{\kappa} \eta - 2i \kappa (\Psi \sigma^m \bar{\eta}) \partial_m \Psi \), is given by

\[
\Psi_\alpha = \frac{W_\alpha}{1 + \frac{\kappa^2}{4} D^2 \bar{X}} + \ldots ,
\] (11)
where the dots stand for the higher-order fermionic terms [9]. The new Goldstone superfield \(\Psi \) obeys the non-linear N=1 superspace constraints

\[
\mathcal{D}^\alpha \Psi_\alpha = \mathcal{D}^\alpha \bar{\Psi} = 0
\] (12)
that are also covariant under the second non-linearly realized supersymmetry. The N=2 covariant derivatives in N=1 superspace [2]

\[
\mathcal{D}_\alpha = D_\alpha + i \kappa^2 (D_\alpha \Psi \sigma^m \bar{\Psi} + D_\alpha \bar{\Psi} \bar{\sigma}^m \Psi) D_m \quad \text{and} \quad D_m = (\omega^{-1})_m^n \partial_n ,
\] (13)
where \(\omega_m^n = \delta_m^n - i \kappa^2 (\partial_m \Psi \sigma^n \bar{\Psi} + \partial_m \bar{\Psi} \bar{\sigma}^n \Psi) \), form a closed algebra. The action (5) may be rewritten in terms of \(\Psi \) and the N=2 covariant derivatives (13) as

\[
S_{sBI} = \frac{1}{4} \int d^4 x d^2 \theta \mathcal{E}^{-1} \Psi^2 + \text{h.c.} ,
\] (14)
whose N=1 chiral superfield \(\mathcal{E}^{-1} = 1 + \frac{\kappa^2}{4} D^2 \bar{X} + \ldots \), should transform as a density under the second supersymmetry, \(\delta_\eta \mathcal{E}^{-1} = -2i \kappa \partial_m (\mathcal{E}^{-1} \Psi \sigma^m \bar{\eta}) \).
Both the electric-magnetic self-duality and the second non-linearly realized supersymmetry of the N=1 BI action may have been expected from its anticipated connection to the D3-brane action. It is just these key properties that allow one to identify the N=1 BI action with the low-energy effective action of the spacetime-filling D3-brane in the case of slowly varying fields. Any direct gauge-fixing of the kappa-symmetric D3-brane action [1] would yield highly involved supersymmetry transformations, whose precise relation to the standard N=1 superspace transformations implies complicated field redefinitions. We didn’t attempt to establish this connection explicitly.

3 N=1 BI action with dilaton-axion coupling

The bosonic BI action coupled to a background dilaton ϕ and axion C reads

$$S_{\text{bosonic}} = \frac{1}{4\pi} \int d^4x \sqrt{-\det(\eta_{mn} + e^{-\phi/2} F_{mn})} + \frac{1}{32\pi} \epsilon^{mnpq} C F_{mn} F_{pq} .$$

(15)

The dilaton-axion background now plays the role of the effective coupling constant, so that we chose $\kappa = 1$ for simplicity. We also rescaled the BI action by a factor of 4π, in order to make it invariant under the T-duality transformations, $C \to C + n$, where $n \in \mathbb{Z}$, because C multiplies the topological density in eq. (15).

It is not difficult to supersymmetrize eq. (15) in N=1 superspace, by using the results of sect. 2. First, let’s define a complex scalar

$$\rho = e^{-\phi} + iC ,$$

(16)

and assume that it belongs to an N=1 chiral superfield,

$$\Phi = \rho + \theta^\alpha \lambda_\alpha + \theta^2 F ,$$

(17)

where we have introduced the physical dilatino λ_α and the ‘auxiliary’ field F. This is not quite innocent procedure in the theories with higher derivatives, because the field F should be truly auxiliary or, at least, $F = 0$ should be a solution to the equations of motion (the auxiliary freedom). Equation (5) implies the N=1 supersymmetric extension of eq. (15) in the form

$$4\pi S = \frac{1}{4} \left(\int d^4xd^2\theta \Phi W^2 + \text{h.c.} \right)$$

$$+ \frac{1}{32} \int d^4xd^4\theta (\Phi + \bar{\Phi})^2 W^2 \bar{W}^2 \mathcal{V} \left(\frac{1}{2}(\Phi + \bar{\Phi}) K, \frac{1}{2}(\Phi + \bar{\Phi}) \bar{K} \right) ,$$

(18)
with \textit{the same} function \mathcal{Y} defined by eq. (4) at $\kappa = 1$, where we have used the identity
\begin{equation}
D^2 W^2 - \bar{D}^2 \bar{W}^2 = i \varepsilon^{mnpq} F_{mn} F_{pq} .
\end{equation}

The N=1 Legendre transform of the action (18) with respect to the gauge superfield W yields the dual N=1 superspace action that has \textit{the same} form (18) in terms of the dual N=1 superfield strength \textit{and} the dual coupling
\begin{equation}
\tilde{\Phi} = \frac{1}{\Phi} .
\end{equation}
Together with imaginary shifts of Φ by integers the S-duality transformation (20) generates the full $SL(2, \mathbb{Z})$ duality, as required. In fact, the action (18) is invariant under the continuous $SL(2, \mathbb{R})$ duality, as it belongs to the class of the $SL(2, \mathbb{R})$ duality invariant actions constructed in ref. [11]. Of course, in quantum theory only $SL(2, \mathbb{Z})$ survives.

The $SL(2, \mathbb{R})$ duality invariant dilaton and axion kinetic terms to be added to eq. (18),
\begin{equation}
\mathcal{L}(\phi, C) = \frac{1}{2} (\partial_m \phi)^2 + \frac{1}{2} e^{2\phi} (\partial_m C)^2 ,
\end{equation}
are given by the Kähler non-linear sigma-model with a Kähler potential
\begin{equation}
K(S, \bar{S}) = - \ln (S + \bar{S}) .
\end{equation}
The N=1 supersymmetrization of eq. (21) in superspace is straightforward,
\begin{equation}
S_{\text{kin.}} = - \int d^4 x d^4 \theta \ln (S + \bar{S}) .
\end{equation}

There is, however, a problem with another (non-linearly realized) supersymmetry. A variation of the leading terms in eq. (18) yields
\begin{equation}
\delta_\eta \mathcal{L} = \frac{1}{2} \int d^2 \theta \, \Phi W^\alpha \eta_\alpha + \text{h.c.} ,
\end{equation}
which is a total derivative only for a \textit{constant} dilaton-axion background Φ. Yet another problem is the auxiliary freedom of F.

The way out of both problems may be the assignment of dilaton and axion to an N=1 \textit{linear} multiplet G, instead of the N=1 chiral multiplet Φ. As regards the bosonic action (15), this means trading C against a gauge two-form B, at the expense of giving up the manifest $U(1)$ gauge invariance, viz.
\begin{equation}
\int CF \wedge F = - \int dC \wedge (A \wedge F) = \int ^* dB \wedge \Theta ,
\end{equation}
where the star denotes the Poincaré dual, \(* (dC) = dB \) and \(\Theta = A \wedge F \) is the abelian Chern-Simons three-form. In N=1 superspace a real linear superfield \(G \) is defined by the constraints

\[
D^2 G = \bar{D}^2 G = 0.
\]

(26)

It consists of a real scalar (dilaton), an antisymmetric tensor \((B) \) subject to the gauge transformation \(\delta B = d\xi \) with the one-form gauge parameter \(\xi \), a dilatino \(\lambda \), and no auxiliary fields. The two-form \(B \) enters the superfield \(G \) only via its field strength \(dB \).

The leading term in eq. (18) can then be rewritten to the form

\[
\frac{1}{4} \left(\int d^4 x d^2 \theta \Phi W^2 + \text{h.c.} \right) = \frac{1}{4} \int d^4 x d^4 \theta (\Phi + \bar{\Phi}) \Omega,
\]

(27)

where we have introduced the Chern-Simons superfield \(\Omega \) via the equations

\[
W^2 = \frac{1}{2} \bar{D}^2 \Omega, \quad \bar{W}^2 = \frac{1}{2} D^2 \Omega.
\]

(28)

By using a solution \(W_\alpha = -\frac{1}{4} \bar{D}^2 D_\alpha V \) to the Bianchi identities (6), in terms of the real gauge scalar superfield \(V \) subject to the gauge transformations \(V \to V + i(\Lambda - \bar{\Lambda}) \), with \(\bar{D}_\alpha \Lambda = 0 \), we easily find \(\Omega = -\frac{1}{4} (D^\alpha V) W_\alpha + \text{h.c.} \).

The full action given by a sum of eqs. (18) and (23) is now dependent upon the chiral superfields \(\Phi \) and \(\bar{\Phi} \) only through their linear combination \(\frac{1}{2} (\Phi + \bar{\Phi}) \), so that it is possible to dualize this action in terms of the linear superfield \(G \) by Legendre transform. \(^2\) We replace in eqs. (18) and (23) the combination \(\frac{1}{2} (\Phi + \bar{\Phi}) \) by a general real superfield \(U \), and add extra term

\[
\int d^4 x d^4 \theta U G
\]

(29)

to the action (18). On the one hand side, varying eq. (26) with respect to \(G \) (in fact, with respect to a potential \(J_\alpha \) in the general solution \(G = D^\alpha \bar{D}^2 J_\alpha + \bar{D}_\alpha D^2 \bar{J}^\alpha \) to the defining constraints (26)), we get \(U = \frac{1}{2} (\Phi + \bar{\Phi}) \) back. On the other hand side, varying with respect to \(U \) in the action

\[
S = \int d^4 x d^4 \theta \left[-\ln U + U G + \frac{1}{8\pi} U \Omega + \frac{1}{32\pi} U^2 W^2 \bar{W}^2 Y(UK, U\bar{K}) \right]
\]

(30)

we find an algebraic equation on \(U \):

\[
\frac{1}{U} = \left(G + \frac{1}{8\pi} \Omega \right) + \frac{1}{32\pi} W^2 \bar{W}^2 \left(2U Y(UK, U\bar{K}) + U^2 \frac{\partial Y(UK, U\bar{K})}{\partial U} \right).
\]

(31)

\(^2\)The possibility of such transformation was noticed in ref. [11].

7
Since $W_\alpha W_\beta W_\gamma = 0$ due to the anti-commutativity of W_α, the second term on the right-hand-side of recursive relation (31) can be considered as an ‘exact’ perturbation. This leads to a complete solution to eq. (31) in the form

$$U^{-1} = G_{\text{mod}} + \frac{1}{32\pi} W^2 \bar{W}^2 \left(\frac{2 \mathcal{Y}(G_{\text{mod}}^{-1} K, G_{\text{mod}}^{-1} \bar{K})}{G_{\text{mod}}} - \frac{\partial \mathcal{Y}(G_{\text{mod}}^{-1} K, G_{\text{mod}}^{-1} \bar{K})}{\partial G_{\text{mod}}} \right),$$

where we have introduced the ‘modified’ N=1 linear multiplet G_{mod} as

$$G_{\text{mod}} = G + \frac{1}{8\pi} \Omega. \quad (33)$$

The appearance of the N=1 Chern-Simons superfield Ω is quite natural from the point of view of string theory and D-branes, where Chern-Simons-type couplings (in components) are known to appear in the famous Green-Schwarz anomaly cancellation mechanism and in the (dual) D-brane actions. In particular, the dilaton superfield G must transform under the $U(1)$ gauge transformations as

$$\delta G = \frac{i}{32\pi} (D^\alpha \Lambda) W_\alpha + \text{h.c.} \quad (34)$$

in order to make G_{mod} gauge-invariant. Equations (26) and (28) lead to the manifestly gauge-invariant constraints on $G_{\text{mod}},$

$$\bar{D}^2 G_{\text{mod}} = \frac{1}{4\pi} W^2, \quad D^2 G_{\text{mod}} = \frac{1}{4\pi} \bar{W}^2. \quad (35)$$

Such couplings were extensively studied in superspace (see e.g., ref. [12] for a recent review), while the relevant superspace geometry appears to be closely related to a three-form N=1 multiplet introduced in ref. [13].

Substituting the solution (32) into the action (30) yields the dual action in the form

$$S = \int d^4 x d^4 \theta \left\{ \ln G_{\text{mod}} + \frac{1}{32\pi} W^2 \bar{W}^2 G_{\text{mod}}^{-2} \mathcal{Y}(G_{\text{mod}}^{-1} K, G_{\text{mod}}^{-1} \bar{K}) \right\}. \quad (36)$$

The existence of another non-linearly realized and spontaneously broken supersymmetry with the transformation law $\delta W_\alpha = \eta_\alpha + \ldots$ implies a non-trivial transformation law of G_{mod} as well, because of the constraint (35),

$$\delta_\eta G_{\text{mod}} = -\frac{1}{8\pi} (\eta^\alpha D_\alpha V + \bar{\eta}_\dot{\alpha} \bar{D}^\dot{\alpha} \dot{V}) + \ldots. \quad (37)$$

The natural (minimal) manifestly N=2 covariant version of the constraints (35) is given by

$$\bar{D}^2 \tilde{G}_{\text{mod}} = \frac{1}{4\pi} \Psi^2, \quad D^2 \tilde{G}_{\text{mod}} = \frac{1}{4\pi} \bar{\Psi}^2, \quad (38)$$

where we have substituted the Maxwell-Goldstone N=1 superfield W by the N=1 Goldstone superfield Ψ, and the N=1 linear (dilaton-axion) superfield G_{mod} by its
fully covariant counterpart \tilde{G}_{mod}. The superfield W obeys the ‘canonical’ constraints (6) but it has the complicated transformation law (10), whereas the $\mathbb{N}=1$ Goldstone superfield Ψ has the ‘canonical’ transformation law under the second supersymmetry but it obeys the complicated constraints (12). The same remarks also apply to G_{mod} and \tilde{G}_{mod}, respectively.

The defining constraints (38) on \tilde{G}_{mod} are apparently consistent with the constraints (12) due to the identities

$$\mathcal{D}_\alpha \mathcal{D}_\beta \mathcal{D}_\gamma = \bar{\mathcal{D}}_\alpha \bar{\mathcal{D}}_\beta \bar{\mathcal{D}}_\gamma = 0 \quad (39)$$

that follow from the definitions (13). It may be useful to rewrite the action (36) into the covariant form

$$S = \int d^4x d^4\theta E^{-1} \ln \tilde{G}_{\text{mod}} \quad (40)$$

with respect to the hidden (extra) supersymmetry, where we have introduced a density $E^{-1}(\Psi, \bar{\Psi}, \tilde{G}_{\text{mod}})$ in the full $\mathbb{N}=1$ superspace.

Acknowledgements

The author would like to thank the Institute for Theoretical Physics of the University in Hannover, and the Department of Physics of the University in Kaiserslautern, Germany, for kind hospitality extended to him during a preparation of this paper. This work was supported by the German Science Foundation (DFG) under the Federal Research Programm ‘String Theory’ and the Volkswagen Grant from the University of Kaiserslautern.
References

