A Next-to-Minimal Supersymmetric Model of Hybrid Inflation †

M. Bastero-Gil\(^1\) and S. F. King\(^2\)∗

\(^1\)Department of Physics and Astronomy, University of Southampton
Southampton, SO17 1BJ, U.K.
\(^2\)CERN, Theory Division, CH–1211 Geneva, Switzerland

Abstract

In this talk we discuss a model of inflation based on a simple variant of the NMSSM, called φNMSSM [1], where the additional singlet φ plays the role of the inflaton in hybrid (or inverted hybrid) type models. As in the original NMSSM, the φNMSSM solves the μ problem of the MSSM via the VEV of a gauge singlet N, but unlike the NMSSM does not suffer from domain wall problems since the offending Z\(_3\) symmetry is replaced by an approximate Peccei-Quinn symmetry which also solves the strong CP problem, and leads to an invisible axion with interesting cosmological consequences. The model predicts a spectral index \(n = 1\) to one part in \(10^{12}\).

CERN-TH/98-25
January 1998

∗On leave of absence from \(^3\).
There is to date no standard model of inflation, and although there has been a good deal of progress in recent years in this area much of the current activity has been concerned with conceptualised field theoretic models rather than well motivated particle physics based models [2]. Possibly the best motivated particle physics model beyond the standard model is the minimal supersymmetric standard model (MSSM). However the only Higgs fields in the MSSM are the two doublets H_1, H_2, which develop vacuum expectation values (VEVs) of order the weak scale, and it is very difficult if not impossible to develop a model of inflation using only these fields for several reasons. The primary reasons are that the electroweak scale turns out to be too small and the Higgs potential is not sufficiently flat. The so called next-to-minimal supersymmetric standard model (NMSSM) is more promising from the point of view of inflation since it contains, in addition to the two Higgs doublets, a Higgs singlet N which may develop a large VEV.

The usual NMSSM does not require the $\mu H_1 H_2$ term of the MSSM, replacing it with a $\lambda N H_1 H_2$ term, and thereby solving the μ problem[4]. The NMSSM also involves a term kN^3 in the superpotential so that the model has an exact Z_3 symmetry [4, 5]. However this is broken at the weak scale leading to a serious domain wall problem [6, 7]. Originally it was thought that the Z_3 may be slightly violated by Planck scale operators, leading to a pressure term that removes the walls. However without an exact Z_3 symmetry supergravity tadpole diagrams will lead to a large singlet mass in the low energy theory, and the amount of Z_3 breaking required to solve the domain wall problem is in conflict with requirement that tadpoles do not make the singlet too heavy [4, 8].

It transpires that, without fine-tuning, the NMSSM does not lead to a sufficiently flat potential along which the inflaton may roll. In order to overcome this we introduce a second singlet ϕ, and replace the term N^3 in the NMSSM by ϕN^2. Thus our model is based on the superpotential:

$$W_{\phi_{NMSSM}} = \lambda N H_1 H_2 - k \phi N^2$$

Note that our model has the same number of dimensionless couplings as the original NMSSM, and we have used the same notation λ, k to emphasise this. With this modification the field ϕ appears only linearly in the superpotential and so will have a very flat potential, lifted only by a tiny mass m_ϕ of order electronvolts, and will play the role of the inflaton field of hybrid inflation [9, 10, 11] if $m^2_\phi > 0$ or inverted.

\footnote{Note that the Giudice-Masiero mechanism [3] presents a solution to the μ problem within the MSSM by generating the μ term via a non-minimal Kahler potential.}
hybrid inflation [12] if $m_\phi^2 < 0$. In the case of inverted hybrid inflation the present model provides an interesting counter example to the problems raised in Ref. [13].

Inflation ends when ϕ reaches a critical value $\phi_c \sim 10^{13}$ GeV after which the N field, which has a zero value during inflation, develops a VEV $< N > \sim \phi_c$. Interestingly the inflaton also develops an eventual VEV $< \phi > \sim \phi_c$ via a tadpole coupling, which is typical of inverted hybrid inflation but quite extraordinary for hybrid inflation. The resulting dimensionless couplings are $\lambda, k \sim 10^{-10}$, whose smallness will be explained by embedding the model into a string inspired model where the couplings result from higher dimension operators, controlled by discrete symmetries [1]. Note that radiative corrections to the inflaton mass are controlled by λ, k and are of order the inflaton mass itself.

Having replaced the NMSSM superpotential by Eq. (1), the troublesome Z_3 symmetry is replaced by a global $U(1)_{PQ}$ Peccei-Quinn symmetry where the global charges of the fields satisfy:

$$Q_N + Q_{H_1} + Q_{H_2} = 0, \quad Q_\phi + 2Q_N = 0.$$ \hspace{1cm} (2)

with the quark fields having the usual axial PQ charges. The global symmetry forbids additional couplings such as N^3, $\phi H_1 H_2$ and so on, but is broken at the scale of the VEVs releasing a very light axion. The axion scale f_a is therefore of order ϕ_c in this model. The axion will be an invisible Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) [14] type axion, which couples to ordinary matter through its mixing with the standard Higgses after the electroweak phase transition. Once we embed our model into a string motivated model, the global PQ symmetry will emerge as an approximate accidental symmetry of an underlying discrete symmetry, and we need to discuss such questions as the solution to the strong CP problem in this wider context. Note that if we had simply removed the N^3 term from the NMSSM superpotential and not replaced it with anything then the theory would also have a PQ symmetry, and the potential would also be flat in the N direction, and then one might be tempted to identify N with the inflaton of hybrid inflation. However in such a scenario the height of the potential during inflation would be of order 1 TeV, leading to an inflaton mass very much smaller than the radiative corrections to its mass of order 1 eV, which would require unnatural fine-tuning. By contrast, with the ϕN^2 term present, the height of the potential during inflation is about 10^8 GeV and the COBE constraint may be satisfied by an inflaton mass of about 1 eV which is the same order as the radiative corrections to its mass, leading to a natural scenario with no fine-tuning required, as discussed in [1].
The tree-level potential which follows from the superpotential in Eq. (1) can be written, if we ignore H_1, H_2 which have smaller VEVs,

$$V_0 = V(0) + V(\phi, N)$$
$$V(\phi, N) = k^2 N^4 + m^2(\phi) N^2 + m_\phi^2 \phi^2,$$
(3)

with the field dependent N mass given by,

$$m^2(\phi) = m_N^2 - 2kA_k\phi + 4k^2\phi^2.$$
(4)

We have taken ϕ and N to be the real components of the complex singlets, and included the soft breaking parameters from the soft supersymmetry breaking potential terms $m_N N^2, m_\phi \phi^2$ and $A_k k\phi N^2$. We have also added by hand a constant vacuum energy $V(0)$ to the potential, about which we shall say more later. Note that $m^2(\phi) = 0$ for ϕ equal to a critical value:

$$\phi_c^\pm = \frac{A_k}{4k} \left(1 \pm \sqrt{1 - 4 \frac{m_N^2}{A_k^2}}\right).$$
(5)

In order to discuss inflation we need to specify the sign of the inflaton mass squared m_ϕ^2. If $m_\phi^2 > 0$ (as in hybrid inflation) then, for $\phi > \phi_c^+$, N will be driven to a local minimum (false vacuum) with $N=0$. Having a positive mass squared, ϕ will roll towards the origin and $m^2(\phi)$ will become negative once the field ϕ reaches ϕ_c^\pm. After that, the potential develops an instability in the $N=0$ direction, and both singlets roll down towards the global minimum,

$$< \phi > = \frac{A_k}{4k},$$
(6)

$$< N > = \frac{A_k}{2\sqrt{2}k} \left[1 - 4 \frac{m_N^2}{A_k^2}\right] = \sqrt{2} \left|\phi_c^\pm - < \phi >\right|,$$
(7)

signaling the end of the inflation. On the other hand if $m_\phi^2 < 0$ (corresponding to inverted hybrid inflation) then we shall suppose that during inflation $\phi < \phi_c^+$, with the inflaton rolling away from the origin, eventually reaching ϕ_c^- and ending inflation with the same global minimum as before. Note that the global minimum VEV $< \phi >$ is sandwiched in between ϕ_c^- and ϕ_c^+ so either hybrid or inverted hybrid inflation is possible in this model depending on the sign of m_ϕ^2.

Since A_k is a soft SUSY breaking parameter of order 1 TeV we have the order of magnitude results:

$$k\phi_c^\pm \sim k < N > \sim k < \phi > \sim 1 \text{ TeV}.$$
(8)

\(^2\text{We require that the condition } A_k^2 > 4m_N^2 \text{ is fulfilled.}\)
Since the VEVs are associated with the large axion scale, we see that the parameter \(k \sim O(10^{-10}) \). Similarly since \(\lambda < N > \) plays the role of the \(\mu \) parameter of the MSSM we require \(\lambda \) to have a similarly small value. We shall discuss the origin of such a small values of \(\lambda, k \) later in the context of the string motivated model, but for now we simply note their smallness and continue.

The negative value of \(V(\phi, N) \) at the global minimum, is compensated by \(V(0) \) which is assumed to take an equal and opposite value, in accordance with the observed small cosmological constant. Thus we assume:

\[
V(0) = -V(<\phi>, <N>) = k^2 <N>^4 = 4k^2(\phi_c^\pm - <\phi>)^4. \tag{9}
\]

During inflation we may set the field \(N = 0 \) so that the potential simplifies to:

\[
V = V(0) + m_\phi^2 \phi^2 \tag{10}
\]

The slow roll conditions are given by:

\[
\epsilon_N = \frac{1}{16\pi} \frac{M_P^2 m_\phi^4 \phi_N^2}{V(0)^2} \ll 1, \tag{11}
\]

\[
|\eta_N| = \frac{M_P^2 |m_\phi^2|}{8\pi V(0)} \ll 1. \tag{12}
\]

The subscripts “N” means that \(\phi \) and \(\epsilon \) have to be evaluated \(N \) e-folds before the end of inflation, when the largest scale of cosmological interest crosses the horizon that is, \(N \approx 60 \). The height of the potential during inflation is approximately constant and given by \(V(0)^{\frac{1}{4}} = k^{\frac{1}{2}} <N> \sim 10^8 \text{ GeV} \).

Assuming that \(V(0) \) dominates the potential during inflation, \(\phi_N = \phi_c^\pm e^{\eta N} \) hence \(\phi_N \approx \phi_c^\pm \), since in our model \(|\eta| \ll 1/N \). We need further to check that our inflationary model is able to produce the correct level of density perturbation, responsible for the large scale structure in the Universe, accordingly to the COBE anisotropy measurements. The spectrum of the density perturbations is given by the quantity \(\delta_H \),

\[
\delta_H^2 = \frac{32}{75} \frac{V(0)}{M_P^4} \frac{1}{\epsilon_N}, \tag{13}
\]

with the COBE value, \(\delta_H = 1.95 \times 10^{-5} \) \([10]\). Writing \(\phi_c^\pm \sim \phi_c \), COBE gives the order of magnitude constraint:

\[
|km_\phi| \simeq 8 \left(\frac{8\pi}{75}\right)^{1/4} \delta_H^{-1/2} \left(\frac{k\phi_c}{M_P^3}\right)^{5/2} \simeq 10^{-18} \text{ GeV} \left(\frac{k\phi_c}{1 \text{ TeV}}\right)^{5/2}. \tag{14}
\]
This, in turn, is more than enough to broadly satisfy the slow-roll conditions. In particular,

$$|\eta_N| \simeq \frac{M_P^2 |km_\phi|^2}{8\pi (\sqrt{2k\phi_c})^4} \sim 10^{-12},$$ \hspace{1cm} (15)$$

$$\epsilon_N \sim \frac{M_P^2 |km_\phi|^4}{16\pi (\sqrt{2k\phi_c})^8\phi_N^2} \sim 4\pi \phi_N^2 M_P^2 \eta_N^2$$ \hspace{1cm} (16)$$

The model predicts a very flat spectrum of density perturbations, as usual in this type of hybrid model, with no appreciable deviation of the spectral index, \(n = 1 + 2\eta - 6\epsilon\), from unity. Only models where the curvature (of either sign) of the inflaton potential is not very suppressed with respect to \(H\) can give rise to a blue \([17]\) (red \([18]\)) tilted spectrum.

Note that COBE requires the product \(|km_\phi|\) to be extremely small. If we take \(k \sim 10^{-10}\), motivated by axion physics as discussed above, then this implies \(m_\phi\) in the electronvolt range. The requirement of such a small mass leads to several interesting requirements on the model. We envisage that at the Planck scale the \(\phi\) mass is equal to zero. This can be naturally accomplished within the framework of supergravity no-scale models \([19]\), where some (not necessarily all) of the SUSY soft masses are predicted to vanish, but with non-zero and universal trilinear coupling parameters. The high energy value of \(m_\phi\) will be subject to radiative corrections which are very small, being controlled by the small coupling \(k\), leading to a mass \(m_\phi\) in the eV range \([1]\) for \(k \approx 10^{-10}\). The small coupling leads to a low reheating temperature \(T_{RH} \approx O(1-10)\) GeV \([1]\). Despite its low value, the reheat temperature is high enough to preserve the standard scenario for nucleosynthesis, \(T_{RH} > 6\) MeV, although quite far to allow electroweak baryogenesis. Moreover, any pre-existing baryon asymmetry is likely to be diluted during inflation. Nevertheless, as has been pointed out \([20, 18]\), the amount of baryon asymmetry needed might be produced directly by the decays of the inflaton. For this mechanism to work we require the presence of baryon-number violating operator in the superpotential, type \(\lambda_{ijk} U_i^c D_j^c D_k^c\). As discussed the inflaton can decay predominantly into light stop squarks, and the subsequent decay of the stops into two down-type quarks from this R-parity baryon number violating operator will generate baryon-antibaryon asymmetry. Other mechanisms, like Affleck-Dine type baryogenesis \([21]\), might also work.

Finally we summarise the successes and open problems facing the model, and indicate some promising new directions along which progress may be made. The model in Eq.4 represents a simple variant of the NMSSM and has the same num-
ber of dimensionless coupling constants. However, unlike the NMSSM, it does not have a domain wall problem since the discrete Z_3 symmetry has been replaced by a continuous PQ symmetry, thereby solving the strong CP problem at the expense of raising the singlet VEVs to 10^{13} GeV, and tuning down the dimensionless couplings to 10^{-10}. We have shown that with these parameters, plus a very light ϕ mass in the eV range, a satisfactory model of hybrid (or inverted hybrid) inflation may result with the prediction that the spectral index n is indistinguishable from unity. The model immediately raises a number of questions, some of which were answered in the fuller treatment in ref.[1], and some which remain open problems. One question which has been addressed is that of the origin of the small couplings λ and k, whose smallness can be understood as the result of certain (string inspired) discrete and gauge symmetries which forbid the operators NH_1H_2 and ϕN^2 at the renormalisable level, but which allow similar non-renormalisable operators involving additional singlets. The smallness of the ratio of the VEVs of the new singlets to the Planck scale then explains the smallness of the effective couplings λ and k in the low energy theory. The high energy theory has no exact global $U(1)_PQ$ symmetry, which emerges as an accidental approximate symmetry of the low energy effective theory. The solution to the strong CP problem was shown to be maintained in a particular example with a discrete $Z_3 \times Z_5$ symmetry [1].

An open question facing the model is that of the origin of the vacuum energy $V(0)$ in Eqs.[3, 9]. We have neither explained the origin of this vacuum energy, nor explained how it exactly cancels the energy of the explicit potential at the global minimum (which amounts to solving the cosmological constant problem.) Furthermore, since the vacuum energy is expected to break supersymmetry, one would expect that in the more general framework of supergravity that it would lead to a contribution to the inflaton mass of order the Hubble constant $H \approx V(0)^{1/2}/3M_P$ or $H \sim 1$ MeV which although small is much larger than the required inflaton mass ~ 1 eV, and would result in an η parameter of order unity (the well known η problem.) One possibility, suggested in [1] is that the vacuum energy results from the D-term part of the potential. But such a D-term inflation scenario [22] seems rather unlikely to work here both since the height of the potential in this model is very low compared to the string scale, $V(0)^{1/4} \sim 10^8$ GeV, and since the solution to the cosmological constant problem would require an even more miraculous cancellation than usual, since the explicit potential results from F-terms. A better possibility would seem to be to appeal to the string no-scale supergravity framework which is supposed to account for the masslessness of the ϕ field, which we identify here as a moduli-like
scalar [19]. In such a framework one can hope to fine-tune the cosmological constant to zero whilst maintaining a vacuum energy during inflation. Moreover in a certain class of no-scale model (those in which a Heisenberg symmetry is present) the inflaton receives no mass of order the Hubble constant thereby solving the η problem [23]. The challenge is to find an explicit string no-scale supergravity model which does this, and at the same time allows the soft couplings that we need in our model.

Acknowledgments

We would like to thank Leszek Roskowski and all the other organisers and participants (especially Mark Hindmarsh, David Lyth Toni Riotto, Jenny Sanderson and many others) for making COSMO-97 such a stimulating and enjoyable experience.

References

[22] A. Riotto, hep-ph/9710323 (published in these proceedings.)