We present sub-arcsec near-infrared 1.5 – 2.5 μm moderate resolution long-slit spectra of eight nearby Seyfert galaxies (z < 0.01), both parallel to the ionization cone and perpendicular to it. These spectra complement similar data on six Seyferts, presented in Reunanen, Kotilainen & Prieto (2002), and are used to study the spatial extent of the line emission, integrated masses of excited H$_2$ and the excitation mechanisms of interstellar gas.

Large concentrations of molecular gas (H$_2$) are present in the nucleus regardless of the Seyfert type. The spatial extent of the H$_2$ emission is larger perpendicular to the cone than parallel to it in 6/8 (75 %) galaxies, in agreement with the unified models of Active Galactic Nuclei. The FWHM sizes of the nuclear H$_2$ emission range from <20 pc to ~300 pc, and are larger than the predicted sizes for molecular torus (1-100 pc). Thus the emission likely arises from the material surrounding the torus rather than directly from the torus.

Broad Brγ was detected in nearly half of the optically classified Seyfert 2 galaxies, including two objects with no evidence for hidden polarized Broad Line Region. This high detection rate stresses the importance of extinction effects as the main cause for the Seyfert dichotomy.

Brγ and [Fe ii] correlate both spatially and kinematically. Nuclear [Fe ii] emission is generally blueshifted which together with