The Detectability of Departures from the Inflationary Consistency Equation

Yong-Seon Song yssong@bubba.ucdavis.edu Department of Physics, One Shields Avenue, University of California, Davis, California 95616

Lloyd Knox lknox@ucdavis.edu Department of Physics, One Shields Avenue, University of California, Davis, California 95616

abstract We study the detectability, given CMB polarization maps, of departures from the inflationary consistency equation, \(r \equiv T/S \simeq -5n_T \), where \(T \) and \(S \) are the tensor and scalar contributions to the quadrupole variance, respectively. The consistency equation holds if inflation is driven by a slowly-rolling scalar field. Departures can be caused by: 1) higher-order terms in the expansion in slow-roll parameters, 2) quantum loop corrections or 3) multiple fields. Higher-order corrections in the first two slow-roll parameters are undetectably small. Loop corrections are detectable if they are nearly maximal and \(r \gtrsim 0.1 \). Large departures (\(|\Delta n_T| \gtrsim 0.1\)) can be seen if \(r \gtrsim 0.001 \). High angular resolution can be important for detecting non-zero \(r + 5n_T \), even when not important for detecting non-zero \(r \).