Quantum Kalman Filtering and the Heisenberg Limit in Atomic Magnetometry

John K. Stockton Andrew C. Doherty Hideo Mabuchi Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, CA, 91125

abstract The shotnoise detection limit in current high-precision magnetometry Romalis2003 is a manifestation of quantum fluctuations that scale as $1/\sqrt{N}$ in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering Belavkin1999 to surpass this conventional limit by exploiting conditional spin-squeezing to achieve $1/N$ field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.