Modal cut-off and the V–parameter in photonic crystal fibers

Niels Asger Mortensen and Jacob Riis Folkenberg
Crystal Fibre A/S, Blokken 84, DK-3460 Birkered, Denmark

Martin D. Nielsen and Kim P. Hansen
Crystal Fibre A/S, Blokken 84, DK-3460 Birkered, Denmark
COM, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

We address the long-standing unresolved problem concerning the V–parameter in a photonic crystal fiber (PCF). Formulate the parameter appropriate for a core-defect in a periodic structure we argue that the multi-mode cut-off occurs at a wavelength λ^* which satisfies $V_{SIF}(\lambda^*) = \pi$. Comparing to numerics and recent cut-off calculations we confirm this result.

In photonic crystal fibers (PCFs) an arrangement of air-holes running along the full length of the fiber provides the confinement and guidance of light. The air-holes of diameter d are typically arranged in a triangular lattice[1] with a pitch Λ (see insert in Fig. 2), but e.g. honey-comb[2] and kagome[3, 4] arrangements are other options. By making a defect in the lattice, light can be confined and guided along the fiber axis. The guidance mechanism depends on the nature of the defect and the air-hole arrangement. For the triangular lattice with a silica-core light is confined by total-internal reflection[1] whereas for an air-core a photonic-bandgap confines light to the defect.[5] For recent reviews we refer to Ref. 6 and references therein.

Both type of PCFs have revealed surprising and novel optical properties. In this work we consider the silica-core PCF (see insert in Fig. 2) which was the one first reported.[1] This structure provides the basis of a variety of phenomena including the endlessly single-mode behaviour,[5] large-mode area PCFs,[6] as well as highly non-linear PCF with unique dispersion properties.[7–10]

Properties of standard fibers are often parametrized by the so-called V–parameter and the entire concept is very close to the heart of the majority of the optical fiber community (see e.g. Refs. 12, 13). The cut-off properties and the endlessly single-mode phenomena of PCFs can also be qualitatively understood within this framework.[1–4, 9, 13] However, the proper choice of the correct length scale for the V–parameter has, until now, remained unsolved as well as the value of V^* that marks the second-order cut-off. In this Letter we clarify this problem and also put recent work on multi-mode cut-off[16, 17] into the context of the V–parameter.

The tradition of parametrizing the optical properties in terms of the V–parameter stems from analysis of the step-index fiber (SIF). The SIF is characterized by the core radius ρ, the core index n_c, and the cladding index n_{cl} which all enter into the parameter V_{SIF} given by

$$V_{SIF}(\lambda) = \frac{2\pi \rho}{\lambda} \sqrt{n_c^2 - n_{cl}^2}. \quad (1)$$

Because of its inverse dependence on the wavelength λ, this quantity is often referred to as the normalized frequency. However, in a more general context, this is somewhat misleading (especially if n_c and/or n_{cl} has a strong wavelength dependence) and in this Letter we would like to emphasize a more physical interpretation. To do this, we first introduce the numerical aperture NA (or the angle of divergence θ) given by

$$NA = \sin \theta = \sqrt{n_c^2 - n_{cl}^2} \quad (2)$$

which follows from use of Snell’s law for critical incidence at the interface between the n_c and n_{cl} regions (see e.g. Refs. 12, 13). Next, we introduce the free-space wave-number $k = 2\pi/\lambda$ and its transverse projection $k_\perp = k \sin \theta$. The V–parameter can now simply be written as

$$V_{SIF} = k_\perp \rho. \quad (3)$$

From this form it is obvious why the parameter carries information about the number of guided modes; the natural parameter describing the transverse intensity distribution is nothing but $k_\perp \rho$. Furthermore, for the second-order cut-off wavelength λ^* the usual value $V_{SIF}(\lambda^*) = V_{SIF}^* \approx 2.405$ follows naturally from the solution of the first zero of the Bessel function, i.e. $J_0(V_{SIF}^*) = 0$.

In general, for wave-propagation in confined structures the number $k_\perp \rho$ has a very central role. The transmission cross-section of a narrow slit[19] is an example and counterparts of the electro-magnetic problem can also be seen in e.g. electronic systems like the quantum-point contact where $k_\perp \rho$ also determines the number of modes (see e.g. Ref. 24). In the context of PCFs it is also natural to consider a V–parameter which was done already in the seminal work by the Bath–group[1] and in the subsequent work on endlessly single-mode properties[7] and

![FIG. 1: Schematics of the cross-section of a PCF. The dashed line illustrates the field-amplitude of a second-order mode with a single node.](image)
effective V–values. However, in attempt of adopting Eq. (1) to PCFs one is faced with the problem of choosing a value for ρ and in Refs. [7, 11] it was emphasized that one may choose any transverse dimension. In this Letter, we point out that the problem is not a matter of defining a core-radius, but rather one should look for the natural length-scale of the problem; the air-hole pitch Λ. This choice was also suggested in Ref. [5] though considered an arbitrary choice. Regarding the second-order cut-off it was in Refs. [14] suggested that $VPCF \approx 2.5$ but it was also concluded that the arbitrary choice of the length scale means that the particular number for $VPCF$ also becomes somewhat arbitrary. In this Letter, we demonstrate that this is not the case and that a very simple and elegant solution exists.

To show this, we introduce the following V–parameter for a PCF

$$VPCF(\lambda) = \frac{2\pi \Lambda}{\lambda} \sqrt{n_c^2(\lambda) - n_{cl}^2(\lambda)}$$

(4)

where $n_c(\lambda) = c\beta/\omega$ is the “core index” associated with the effective index of the fundamental mode and similarly $n_{cl}(\lambda)$ is the effective index of the fundamental space-filling mode in the triangular air-hole lattice. The second-order cut-off occurs at a wavelength λ^* where the effective transverse wavelength $\lambda_{\perp} = 2\pi/k_{\perp}$ allows a mode with a single node (see schematics in Fig. 1) to fit into the defect region, i.e. $\lambda_{\perp}^* \approx 2\Lambda$. Writing Eq. (4) in terms of k_{\perp} the corresponding value of $VPCF^*$ easily follows

$$VPCF^* = k_{\perp}^* \Lambda = \frac{2\pi}{\lambda_{\perp}^*} \Lambda = \pi.$$

(5)

Though this derivation may seem somewhat heuristic we shall compare to numerical results and show that the very central number π is indeed the correct value.

For the numerical comparison we need to calculate both $VPCF(\lambda)$ and the second-order cut-off λ^*. For the V–parameter we use a fully-vectorial plane-wave method [21] to calculate $n_c(\lambda)$ and $n_{cl}(\lambda)$ for various air-hole diameters. For the material refractive index we use $n = 1$ for the air-holes and $n = 1.444$ for the silica. Ignoring the frequency dependence of the latter, the wave equation becomes scale-invariant [22] and all the results to be presented can thus be scaled to the desired value of Λ. Regarding the cut-off, one of us recently suggested a phase diagram for the single and multi-mode operation regimes [17] which was subsequently followed up in more detail by Kuhlme et al. [18]. From highly accurate multipole solutions of Maxwell’s equations, it was numerically found that the single/multi-mode boundary can be accounted for by the expression [18]

$$\lambda^*/\Lambda \simeq \alpha (d/\Lambda - d^*/\Lambda)\gamma.$$

(6)

Here, $\alpha \simeq 2.80 \pm 0.12$, $\gamma \simeq 0.89 \pm 0.02$, and $d^*/\Lambda \simeq 0.406$. This phase-boundary is shown by the solid line in panel (a) of Fig. 2 and it has recently been confirmed experimentally based on cut-off measurements in various

FIG. 2: Panel (a) shows the single/multi-mode phase diagram. The solid line shows the phase-boundary of Kuhlme et al. [18] [Eq. (6)] and the circles indicate solutions to $VPCF(\lambda^*) = \pi$ [Eqs. (4,5)]. Panel (b) shows numerical results for PCFs with varying hole diameter ($d/\Lambda = 0.43, 0.44, 0.45, 0.475, 0.50, 0.55, 0.60, 0.65$, and 0.70 from below). The full lines show results for the V–parameter [Eq. (4)], the circles indicate the corresponding cut-off wavelengths [Eq. (6)], and the dashed line shows $VPCF^*$ [Eq. (5)].
For \(d/\Lambda < d^*/\Lambda \) the PCF has the remarkable property of being so-called endlessly single-mode\(^7\) and for \(d/\Lambda > d^*/\Lambda \) the PCF supports a second-order mode at wavelengths \(\lambda/\Lambda < \lambda^*/\Lambda \) and is single-mode for \(\lambda/\Lambda > \lambda^*/\Lambda \).

In panel (b) of Fig. 2 we show numerical results for various values of \(d/\Lambda \). The full lines show results for the \(V \)–parameter, Eq. (4), the circles indicate the corresponding cut-off wavelengths, Eq. (6), and the dashed line shows \(V_{PCF} \), Eq. (5). First of all we notice that the cut-off results of Kuhlmey et al.,\(^{18}\) Eq. (6), agrees with a picture of a constant \(V \)–value \(V^*_{PCF} \) below which the PCF is single-mode. This similarity with SIFs indicates that the cut-off in SIFs and PCFs rely on the same basic physics. Furthermore, it is also seen that the cut-off points are in excellent agreement with the value \(V^*_{PCF} = \pi \), Eq. (6), and this also supports the idea of \(\Lambda \) as the natural length scale for the \(V \)–parameter.

In conclusion we have shown that the multi-mode cut-off in PCFs can be understood from a generalized \(V \)–parameter and that the single-mode regime is characterized by \(V_{PCF} < V^*_{PCF} = \pi \).

N. A. Mortensen is grateful to B. T. Kuhlmey for stimulating discussions and M. D. Nielsen and K. P. Hansen acknowledge financial support by the Danish Academy of Technical Sciences. N. A. Mortensen’s e-mail address is nam@crystal-fibre.com.

References: