Classical capacity of the lossy bosonic channel: the exact solution

V. Giovannetti1, S. Guha1, S. Lloyd1,2, L. Maccone1, J. H. Shapiro3, and H. P. Yuen3

1Massachusetts Institute of Technology – Research Laboratory of Electronics
2Massachusetts Institute of Technology – Department of Mechanical Engineering
77 Massachusetts Ave., Cambridge, MA 02139-4307.
3Northwestern University – Department of Electrical and Computer Engineering,
2145 N. Sheridan Rd., Evanston, IL 60208-3118.

The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.

PACS numbers: 03.67.Hk,42.50.-p,89.70.+c,05.40.Ca

A principal goal of quantum information theory is evaluating the information capacities of important communication channels. At present—despite the many efforts that have been devoted to this endeavor and the theoretical advances they have produced [1]—exact capacity results are known for only a handful of channels. In this paper we consider the lossy bosonic channel, and we develop an exact result for its classical capacity \(C\), i.e., the number of bits that it can communicate reliably per channel use. The lossy bosonic channel consists of a collection of bosonic modes that lose energy en route from the transmitter to the receiver. Typical examples are free space or optical fiber transmission, in which photons are employed to convey the information. The classical capacity of the lossless bosonic channel—whose transmitted states arrive undisturbed at the receiver—was derived in [2, 3]. When there is loss, however, the received state is generally different from the transmitted state, and quantum mechanics requires that there be an accompanying quantum noise source. In [4] a first step toward the evaluation of quantum noise source. In [4] a first step toward the calculation of the Holevo information for appropriately coded coherent-state inputs. Thus, because the two bounds coincide, we not only have the capacity of the lossy bosonic channel, but we also know that capacity can be achieved by transmitting coherent states.

Classical capacity.— The classical capacity of a channel can be expressed in terms of the Holevo information

\[
\chi(p_j, \sigma_j) \equiv S(\sum_j p_j \sigma_j) - \sum_j p_j S(\sigma_j),
\]

where \(p_j\) are probabilities, \(\sigma_j\) are density operators and \(S(\rho) \equiv -\text{Tr}[\rho \log \rho]\) is the von Neumann entropy. Since it is not known if \(\chi\) is additive, \(C\) must be calculated by maximizing the Holevo information over successive uses of the channel, so that \(C = \sup_n \left(C_n/n\right)\) with

\[
C_n = \max_{p_j, \sigma_j} \chi(p_j, N^\otimes n[\sigma_j]),
\]

where the states \(\sigma_j\) live in the Hilbert space \(\mathcal{H}^\otimes n\) of \(n\) successive uses of the channel and \(N\) is the completely positive map that describes the channel [5]. In our case, \(\mathcal{H}\) is the Hilbert space associated with the bosonic modes used in the communication and \(N\) is the loss map. Because \(\mathcal{H}\) is infinite dimensional, \(C_n\) diverges unless the maximization in Eq. (2) is constrained: here we assume that the mean energy of the input state in each of the \(n\) realizations of the channel is a fixed quantity \(\mathcal{E}\). For multimode bosonic channels, \(N\) is given by \(\otimes_k N_k\), where \(N_k\) is the loss map for the \(k\)th mode, which can be obtained, tracing away the vacuum noise mode \(b_k\), from the Heisenberg evolution

\[
a_k' = \sqrt{\eta_k} a_k + \sqrt{1 - \eta_k} b_k,
\]

with \(a_k\) and \(a_k'\) being the annihilation operators of the input and output modes and \(0 \leq \eta_k \leq 1\) is the mode transmissivity (quantum efficiency).

The main result of this paper is that the capacity of the lossy bosonic channel, in bits per channel use, is

\[
C = \max_{N_k} \sum_k g(\eta_k N_k),
\]

where \(g(x) \equiv (x + 1) \log_2 (x + 1) - x \log_2 x\) and the maximization is performed on the modal average photon-number sets \(\{N_k\}\) that satisfy the energy constraint

\[
\sum_k \hbar \omega_k N_k = \mathcal{E},
\]
where the maximization is performed over the sets \(\{ \bar{\sigma}_N \} \) transmitted through a lossless channel with input state realizations. The first inequality in Eq. (8) comes from introducing Eq. (9) into (8), we obtain the desired result by the amount of information that can be transmitted through a lossless channel with input state \(\rho \). This expression was obtained from Eq. (2) by calculating \(\chi \) for \(n = 1 \) under the following encoding: in every mode \(k \) we use a mixture of coherent states \(|\mu_k\rangle \) weighted with the Gaussian probability distribution

\[
p_k(\mu) = \exp[-|\mu|^2/N_k]/(\pi N_k) .
\]

(6)

This corresponds to feeding the channel the input state

\[
\rho = \bigotimes_k \int d\mu \, p_k(\mu) \, |\mu\rangle_k \langle \mu| ,
\]

(7)

which is a thermal state that contains no entanglement or squeezing. The right-hand side of Eq. (4) is also an upper bound for \(C \) since it is certainly true for the lossless case. In particular, it was already known that \(C \) can be achieved with a number-state alphabet \(\{ \} \); our work shows that there is also a coherent-state encoding that achieves capacity for this case. [The two procedures employ the same average input state, Eq. (7)] However, the probability of the receiver confusing any two distinct finite-length number state codewords is zero in the lossless case, whereas it is positive for all pairs of finite-length coherent-state codewords. The lossless case also provides an example of the possible role of quantum effects at the receiver: the optimal coherent-state system uses a classical transmitter, which is obtained from \(N^\otimes n[\bar{\sigma}] \) by tracing over all the other modes and over the other \(n - 1 \) channel realizations. The first inequality in Eq. (8) comes from bounding \(C_n \) by the amount of information that can be transmitted through a lossless channel with input state \(N^\otimes n[\bar{\sigma}] \), viz., the output of the lossy channel with optimal input state \(\bar{\sigma} \). Now let \(N^l_k \) be the average photon number for the state \(|\varphi^{(l)}_k\rangle \); \(\{ N^l_k \} \) must satisfy the energy constraint for all \(l \). Moreover, the loss will leave only \(\eta_k N^l_k \) photons, on average, in the corresponding output state \(N_k[\varphi^{(l)}_k] \). This implies that

\[
S(N^l_k[\varphi^{(l)}_k]) \leq g(\eta_k N^l_k) ,
\]

(9)

where the inequality follows from the fact that the term on the right is the maximum entropy associated with states that have \(\eta_k N^l_k \) photons on average. Introducing Eq. (6) into (8), we obtain the desired result

\[
C_n \leq \sum_{l=1}^n N_k \sum_k g(\eta_k N^l_k) \leq n \max_{N_k} \sum_k g(\eta_k N_k) ,
\]

(10)

Discussion.— Some important consequences derive from our analysis. First, capacity is achieved by a single use of the channel \((n = 1) \) employing random coding—factored over the channel modes—on coherent states as shown in Eq. (11). This means that, at least for this channel, entangled codewords are not necessary and that the Holevo information is not superadditive. Notice that the lossy bosonic channel can accommodate entanglement among successive uses of the channel, as well as entanglement among different modes in each channel use. Surprisingly, neither of these two strategies is necessary to achieve capacity. Nor is it necessary to use any non-classical state, such as a photon number state or a squeezed state, to achieve capacity; classical (coherent state) light is all that is needed. Classical light suffices because the loss map \(\mathcal{N} \) simply contracts coherent-state codewords in phase space toward the vacuum state. Coherent states retain their purity in this process, and hence the non-positive part of the Holevo information—the second term of the right-hand side of Eq. (11) retains its maximum value of zero. Despite the preceding properties, quantum effects are relevant to communication over the lossy bosonic channel. For example, our proof does not exclude the possibility of achieving capacity using quantum encodings, and such encodings may have lower error probabilities, for finite-length block codes, than those of the capacity-achieving coherent state encoding. This is certainly true for the lossless case. In particular, it was already known that \(C \) can be achieved with a number-state alphabet \(\{ \} \); our work shows that there is also a coherent-state encoding that achieves capacity for this case. [The two procedures employ the same average input state, Eq. (7)] However, the probability of the receiver confusing any two distinct finite-length number state codewords is zero in the lossless case, whereas it is positive for all pairs of finite-length coherent-state codewords. The lossless case also provides an example of the possible role of quantum effects at the receiver: the optimal coherent-state system uses a classical transmitter, but its detection strategy, can be highly non-classical. In contrast, the optimal number-state system for the lossless channel requires a non-classical light source, but its receiver uses simple modal photon counting.

How well can we approach this capacity using conventional decoding procedures? Using the coherent-state encoding of Eq. (1) with either heterodyne or homodyne detection, the amount of information that can be reliably transmitted is

\[
I = \max_{N_k} \sum_k x \log_2(1 + \eta_k N_k/\xi^2) ,
\]

(11)

where \(\xi = 1/2 \) for homodyne and \(\xi = 1 \) for heterodyne, and where, as usual, the maximization must be performed under the energy constraint. Equation (11) has been obtained by summing over \(k \) the Shannon capacities for the appropriate detection procedure.
general $I < C$: heterodyne or homodyne detection cannot be used to achieve the capacity. However, heterodyne is asymptotically optimal in the limit of large numbers of photons in all modes, $N_k \to \infty$ for all k, because $g(x)/\log_2(x) \to 1$ as $x \to \infty$.

The capacity expression C can be simplified by using standard variational techniques to perform the constrained maximization in Eq. (4), yielding

$$C = \sum_k g(\eta_k N_k(\beta)),$$

(12)

where $N_k(\beta)$ is the optimal photon number distribution

$$N_k(\beta) = \frac{1}{e^{\hbar \omega_k/\eta_k} - 1},$$

(13)

with β being a Lagrange multiplier that is determined through the constraint on average transmitted energy.

In the following sections we calculate the capacities of some bosonic channels. The first two examples help clarify the derivation of Eq. (4); the last is a realistic model of frequency-dependent lossy communication, on which we also evaluate the performance of homodyne and heterodyne detection.

Narrowband channel.—Consider the narrowband channel in which a single mode of frequency ω is employed. In this case, Eq. (12) becomes

$$C = g\left(\frac{\eta E}{\hbar \omega}\right),$$

(14)

where $N = E/(\hbar \omega)$ is the average photon number at the input. Equation (14) was conjectured in [8], where it was given as a lower bound on C. The following simple argument shows that $g(\eta N)$ is also an upper bound for C. Consider the lossless channel that employs N photons on average per channel use. Its capacity is given by $\max_\gamma S(\gamma)$, where the maximization is performed over input states γ with mean energy $\mathcal{E} = \hbar \omega N$. The maximum, computed through variational techniques, is $g(\eta N)$ [3,11]. The lossless channel cannot have a lower capacity than the lossy channel, because both have the same average received energy, and the set of receiver density operators achievable over the lossy channel is a proper subset of those achievable in the lossless system [7]. This implies that $g(\eta N)$ is an also upper bound on C and hence equal to C.

Frequency-independent loss.—Now consider a broadband channel with uniform transmissivity, $\eta_k = \eta$, that employs a set of frequencies $\omega_k = k \delta \omega$ for $k \in \mathbb{N}$. In this case, Eq. (12) gives

$$C = \sqrt{\frac{\eta}{\ln 2}} \sqrt{\frac{\pi P}{3\hbar \delta \omega}} T,$$

(15)

where $T = 2\pi/\delta \omega$ is the transmission time, and $P = \mathcal{E}/T$ is the average transmitted power. Equation (15) was derived for the lossless case ($\eta = 1$) in [2] and was shown to provide a lower bound on C in [6]. In order to show that the right-hand side of Eq. (15) is also an upper bound, consider the lossless broadband channel in which the average input power is equal to ηP, viz., the average output power of the lossy channel. According to [2], the capacity of this channel is $(\sqrt{\pi \eta P/3} T/\ln 2)$, which coincides with the right-hand side of Eq. (15). The reasoning given above for the single-mode case now implies that the broadband lossless channel’s capacity cannot be less than that of the broadband lossy channel, thus completing the proof.

Far-field, free-space optical communication.—Consider the free-space optical communication channel in which the transmitter and the receiver communicate through circular apertures of areas A_t and A_r that are separated by an L-m-long propagation path. At frequency ω there will only be a single spatial mode in the transmitter aperture that couples appreciable power to the receiver aperture when the Fresnel number $D(\omega) = A_t A_r (\omega/2\pi c L)^2$ satisfies $D(\omega) \ll 1$, [14]. This is the far-field power transfer regime at frequency ω, and $D(\omega)$ is the transmissivity achieved by the optimal spatial mode. A broadband far-field channel results when the transmitter and receiver use the optimal spatial modes at frequencies up to a critical frequency ω_c, with $D(\omega_c) \ll 1$. In this case we use $\eta_k = D(\omega_k)$ in Eq. (12), and the capacity C becomes

$$C = \frac{\omega_c T}{2\pi y_0} \int_0^{y_0} dx g\left(\frac{1}{e^{1/x} - 1}\right),$$

(16)

where y_0 is a dimensionless parameter inversely proportional to the Lagrange multiplier β, which is determined.
from the power constraint

\[\mathcal{P} = \frac{2\pi \hbar c^2 L^2}{A_l A_r} \int_0^{y_0} \frac{dx}{x} \frac{1}{e^{1/x} - 1}. \]

(17)

Although \(C \) is proportional to the maximum frequency \(\omega_c \), this factor cannot be increased without bound, for fixed transmitter and receiver apertures, because of the far-field assumption. Figure 2 plots \(C \) versus \(\mathcal{P} \) obtained from numerical evaluation of Eqs. (16) and (17).

![Figure 2: Power spectrum](image)

FIG. 2: Power spectrum \(S \equiv \omega_k N_k \) for the far-field free-space channel plotted versus frequency in the continuum regime \([13]\). The solid curve is for optimal capacity, the dotted curve is for homodyne detection, and the dashed curve is for heterodyne. At low power, the noise advantage of homodyne makes its capacity higher than that of heterodyne. At high power levels heterodyne prevails thanks to its bandwidth advantage, and its capacity approaches \(C \) asymptotically.

To compare the capacity of Eq. (16) with the information transmitted using heterodyne or homodyne detection, we perform the Eq. (11) maximization. The Lagrange multiplier technique gives the optimal value \(N_k(\beta) = \max \left\{ 1/(\beta \omega_k) - \xi^2/\eta k , 0 \right\} \), plotted in Fig. 2 [Notice that the non-negativity of this solution forbids the use of frequencies lower than \(\omega_0 \equiv \xi^2/\beta \omega_c^2 / D(\omega_c) \).] With this photon number distribution, Eq. (11) becomes

\[I = \xi \omega_c T \left(1/y_0 - 1 + \ln y_0 \right) / \left(2\pi \ln 2 \right), \]

(18)

where \(y_0 \) is now determined from the condition \(\mathcal{P} = \xi^2 \pi c^2 L^2 (y_0 - 1 - \ln y_0) / (A_l A_r) \). We have plotted \(I \) versus \(\mathcal{P} \) in Fig. 1 for heterodyne and homodyne detection. At low power, the noise advantage of homodyne makes its capacity higher than that of heterodyne. At high power levels heterodyne prevails thanks to its bandwidth advantage, and its capacity approaches \(C \) asymptotically.

Conclusions. We have derived the classical capacity of the lossy multimode bosonic channel when the average energy devoted to the transmission is bounded. Interestingly, quantum features of the signals (such as entanglement or squeezing) are not required to achieve capacity, because an optimal coherent-state encoding exists. At the decoding stage, however, quantum effects might still be necessary (e.g., in the form of joint measurements on the output) as standard homodyne and heterodyne measurements are not optimal, except for the high power regime where heterodyne detection is asymptotically optimal. The focus of this paper has been the lossy channel with minimal (vacuum-state) noise. A more general treatment would include non-vacuum noise, and would allow for amplification.

This work was funded by the ARDA, NRO, NSF, and by ARO under a MURI program.

References:

[10] The concavity of \(g(x) \) implies that this constraint is not strictly necessary: it suffices to require that the average over \(l \) be fixed, i.e. \(\sum_{k,l} \hbar \omega_k N_k(l)/n = \mathcal{E} \).

[12] In the noiseless case the maximization of the Holevo quantity \(\mathcal{E} \) yields the von Neumann entropy of the input state, which is a subadditive quantity.

[13] Notice that in the high-power regime, the sums in Eqs. (3) and (9) can be replaced with integrals.