Evolution of Dust-to-Metal Ratio in Galaxies

Akio K. Inoue
JSPE research fellow. Present address: Department of Physics, Kyoto University, Sakyo-
ku, Kyoto 606-8502, akinoue@scphys.kyoto-u.ac.jp. Department of Astronomy, Kyoto University, Sakyo-
ku, Kyoto 606-8502 inoue@kusastro.kyoto-u.ac.jp

dust, extinction — galaxies: evolution — galaxies: ISM — ISM: evolution

abstract This paper investigates the evolution of the dust-to-metal ratio in galaxies based on a simple
evolution model for the amount of metal and dust with infall. We take into account grain formation in stellar
mass-loss gas, grain growth by the accretion of metallic atoms in a cold dense cloud, and grain destruction by
SNe shocks. Especially, we propose that the accretion efficiency is independent of the star-formation history.
This predicts various evolutionary tracks in the metallicity (Z)-dust-to-gas ratio (D) plane depending on
the star-formation history. In this framework, the observed linear Z-D relation of nearby spiral galaxies can
be interpreted as a sequence of a constant galactic age. We emphasize that an observational study of the
Z-D relation of galaxies at $z \sim 1$ is very useful to constrain the efficiencies of dust growth and destruction.
We also suggest that the Lyman break galaxies at $z \sim 3$ have a very low dust-to-metal ratio, typically 0.1.
Although the effect of infall on the evolutionary tracks in the Z-D plane is quite small, the dispersion of the
infall rate can disturb the Z-D relation with a constant galactic age.