Comment on ‘Vector potential of the Coulomb gauge’∗

V Hnizdo

National Institute for Occupational Safety and Health,
1095 Willowdale Road, Morgantown, WV 26505, USA

E-mail: vbh5@cdc.gov

Abstract. The expression for the Coulomb-gauge vector potential in terms of the ‘instantaneous’ magnetic field derived by Stewart [2003 Eur. J. Phys. 24 519] by employing Jefimenko’s equation for the magnetic field and Jackson’s formula for the Coulomb-gauge vector potential can be obtained immediately by just using the Helmholtz theorem.

In a recent article [1], Stewart has derived the following expression for the Coulomb-gauge vector potential \(A_C \) in terms of the ‘instantaneous’ magnetic field \(B \):

\[
A_C(r, t) = \frac{\nabla \times}{4\pi} \int d^3r' \frac{B(r', t)}{|r - r'|}.
\]

(1)

His derivation consists of substituting in (1) Jefimenko’s expression for the magnetic field in terms of the retarded current density and its partial time derivative [2], and then obtaining, after some non-trivial algebra, an expression for \(A_C \) in terms of the current density derived recently by Jackson [3].

Stewart has used the Helmholtz theorem as a starting point of his derivation, to provide a ‘suggestion’ that (1) is true. In this comment, we show that there is no need to go beyond a simple application of this theorem in order to prove formula (1).

According to the Helmholtz theorem [4], an arbitrary-gauge vector potential \(A \), as any three-dimensional vector field whose divergence and curl vanish at infinity, can be decomposed uniquely into a longitudinal part \(A_\parallel \), whose curl vanishes, and a transverse part \(A_\perp \), whose divergence vanishes:

\[
A(r, t) = A_\parallel(r, t) + A_\perp(r, t) \quad \nabla \times A_\parallel(r, t) = 0 \quad \nabla \cdot A_\perp(r, t) = 0.
\]

(2)

The longitudinal and transverse parts in (2) are given explicitly by

\[
A_\parallel(r, t) = -\frac{\nabla}{4\pi} \int d^3r' \frac{\nabla' \cdot A(r', t)}{|r - r'|} \quad A_\perp(r, t) = \frac{\nabla \times}{4\pi} \int d^3r' \frac{\nabla' \times A(r', t)}{|r - r'|}.
\]

(3)

∗This comment is written by V Hnizdo in his private capacity. No support or endorsement by the Centers for Disease Control and Prevention is intended or should be inferred.
Let us now decompose the vector potential \(\mathbf{A} \) in terms of the Coulomb-gauge vector potential \(\mathbf{A}_C \) as follows:

\[
\mathbf{A}(\mathbf{r}, t) = [\mathbf{A}(\mathbf{r}, t) - \mathbf{A}_C(\mathbf{r}, t)] + \mathbf{A}_C(\mathbf{r}, t).
\]

If the curl of \([\mathbf{A} - \mathbf{A}_C]\) vanishes, then, according to equation (2) and the fact that the Coulomb-gauge vector potential is by definition divergenceless, the Coulomb-gauge vector potential \(\mathbf{A}_C \) is the transverse part \(\mathbf{A}_\perp \) of the vector potential \(\mathbf{A} \). But because the two vector potentials must yield the same magnetic field, the curl of \([\mathbf{A} - \mathbf{A}_C]\) does vanish:

\[
\nabla \times [\mathbf{A}(\mathbf{r}, t) - \mathbf{A}_C(\mathbf{r}, t)] = \nabla \times \mathbf{A}(\mathbf{r}, t) - \nabla \times \mathbf{A}_C(\mathbf{r}, t) = \mathbf{B}(\mathbf{r}, t) - \mathbf{B}(\mathbf{r}, t) = 0. \tag{5}
\]

Thus the Coulomb-gauge vector potential is indeed the transverse part of the vector potential \(\mathbf{A} \) of any gauge. Therefore, it can be expressed according to the second part of (3) and the fact that \(\nabla \times \mathbf{A} = \mathbf{B} \) as

\[
\mathbf{A}_C(\mathbf{r}, t) = \mathbf{A}_\perp(\mathbf{r}, t) = \frac{1}{4\pi} \int d^3r' \frac{\nabla' \times \mathbf{A}(r', t)}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{4\pi} \int d^3r' \frac{\mathbf{B}(r', t)}{|\mathbf{r} - \mathbf{r}'|}. \tag{6}
\]

The right-hand side of (6) is the expression (1) derived by Stewart.

There is an expression for the Coulomb-gauge scalar potential \(V_C \) in terms of the ‘instantaneous’ electric field \(\mathbf{E} \) that is analogous to the expression (6) for the Coulomb-gauge vector potential:

\[
V_C(\mathbf{r}, t) = \frac{1}{4\pi} \int d^3r' \frac{\nabla' \cdot \mathbf{E}(r', t)}{|\mathbf{r} - \mathbf{r}'|}. \tag{7}
\]

This follows directly from the definition \(V_C(\mathbf{r}, t) = \int d^3r' \rho(r', t)/|\mathbf{r} - \mathbf{r}'| \) of the Coulomb-gauge scalar potential and the Maxwell equation \(\nabla \cdot \mathbf{E} = 4\pi \rho \). The expressions (6) and (7) may be regarded as a ‘totally instantaneous gauge’, but it would seem more appropriate to view them as the solution to a problem that is inverse to that of calculating the electric and magnetic fields from given Coulomb-gauge potentials \(\mathbf{A}_C \) and \(V_C \) according to

\[
\mathbf{E} = -\nabla V_C - \frac{\partial \mathbf{A}_C}{c \partial t} \quad \mathbf{B} = \nabla \times \mathbf{A}_C. \tag{8}
\]

In closing, we note that the first equation of (8) gives directly the longitudinal part \(\mathbf{E}_\parallel \) and transverse part \(\mathbf{E}_\perp \) of an electric field \(\mathbf{E} \) in terms of the Coulomb-gauge potentials \(V_C \) and \(\mathbf{A}_C \) as \(\mathbf{E}_\parallel = -\nabla V_C \) and \(\mathbf{E}_\perp = -\partial \mathbf{A}_C/c \partial t \) (the apparent paradox that the longitudinal part \(\mathbf{E}_\parallel \) of a retarded electric field \(\mathbf{E} \) is thus an instantaneous field has been discussed recently in [5]).

\[2\] Jefimenko O D 1989 Electricity and Magnetism 2nd edn (Star City, WV: Electret Scientific)
\[3\] Jackson J D 1999 Classical Electrodynamics 3rd edn (New York: Wiley)
 Jefimenko O D 2002 Comment on ‘Causality, the Coulomb field, and Newton’s law of gravitation’ Am. J. Phys. 70 964
 Rohrlich F 2002 Reply to “Comment on ‘Causality, the Coulomb field, and Newton’s law of gravitation’” Am. J. Phys. 70 964