Cavity QED with optically transported atoms

J. A. Sauer K. M. Fortier M. S. Chang C. D. Hamley M. S. Chapman
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430

abstract

Ultracold ^{87}Rb atoms are delivered into a high-finesse optical micro-cavity using a translating optical lattice trap and detected via the cavity field. The atoms are loaded into an optical lattice from a magneto-optic trap (MOT) and transported 1.5 cm into the cavity. Our cavity satisfies the strong-coupling requirements for a single intracavity atom, thus permitting real-time observation of single atoms transported into the cavity. This transport scheme enables us to vary the number of intracavity atoms from 1 to >100 corresponding to a maximum atomic cooperativity parameter of 5400, the highest value ever achieved in an atom–cavity system. When many atoms are loaded into the cavity, optical bistability is directly measured in real-time cavity transmission.