On the issue of imposing boundary conditions on quantum fields

E. Elizalde
Consejo Superior de Investigaciones Científicas (ICE/CSIC)
Institut d’Estudis Espacials de Catalunya (IEEC)
Edifici Nexus, Gran Capità 2-4, 08034 Barcelona, Spain

Abstract

An interesting example of the deep interrelation between Physics and Mathematics is obtained when trying to impose mathematical boundary conditions on physical quantum fields. This procedure has recently been re-examined with care. Comments on that and previous analysis are here provided, together with considerations on the results of the purely mathematical zeta-function method, in an attempt at clarifying the issue. Hadamard regularization is invoked in order to fill the gap between the infinities appearing in the QFT renormalized results and the finite values obtained in the literature with other procedures.

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.
A. Einstein

1Presently on leave at Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139. E-mail: elizalde@math.mit.edu elizalde@ieec.fcr.es
1 Introduction

The question, most beautifully phrased by Eugene Wigner as that of the unreasonable effectiveness of mathematics in the natural sciences [1] is an old and intriguing one. It certainly goes back to Pythagoras and his school ("all things are numbers"), even probably to the sumerians, and maybe to more ancient cultures, which left no trace. In more recent times, I. Kant and A. Einstein, among others, contributed to this idea with extremely beautiful and profound reflections. Also, mathematical simplicity, and beauty, have remained for many years, and to many important theoretical physicists, crucial ingredients when having to choose among different plausible possibilities.

A crude example of unreasonable effectiveness is provided by the regularization procedures in quantum field theory based upon analytic continuation in the complex plane (dimensional, heat-kernel, zeta-function regularization, and the like). That one obtains a physical, experimentally measurable, and extremely precise result after these weird mathematical manipulations is, if not unreasonable, certainly very mysterious. No wonder that for more one highly honorable physicist, the taming of the infinities that plague the calculations of modern quantum physics and the ensuing regularization/renormalization issue, were always unacceptable, illegal practices. Those methods are presently full justified and blessed with Nobel Prizes, but more because of the many and very precise experimental checkouts (the effectiveness) than for their intrinsic reasonableness.

As this note is meant not just for specialists, a simple example may be clarifying. Consider the calculation of the zero point energy (vacuum to vacuum transition, also called Casimir energy [2]) corresponding to a quantum operator, H, with eigenvalues λ_n,

$$E_0 = \langle 0 | H | 0 \rangle = \frac{1}{2} \sum_n \lambda_n,$$

(1)

where the sum over n is a sum over the whole spectrum (which will involve, in general, several continuum and several discrete indices.) The last appear typically when compactifying the space coordinates (much in the same way as time compactification gives rise to finite-temperature field theory). In turns out, in fact, that only in very special cases will this sum yield a convergent series. Generically one has to deal with a divergent sum, which is then regularized by different appropriate means. The zeta-function method [3] —which stands on solid and flourishing mathematical grounds [4]— will interprete this sum as being the value obtained for the zeta function of the operator H, namely

$$\zeta_H(s) = \sum_n \lambda_n^{-s},$$

(2)

at the point $s = -1$ (we set $\hbar = c = 1$). It turns out generically that $\zeta_H(s)$ is well defined as an absolutely convergent series for Re $s > a_0$ (a_0 is a certain abscissa of convergence), and that it can be analytically continued (in a perfectly defined way) to the whole complex plane, with the possible appearance of poles as only singularities. If, as it often happens, $\zeta_H(s)$ has no pole at $s = -1$ we are done; if it hits a pole there, then further elaboration of the method is necessary. That the mathematical result one gets through this process of analytical continuation in the complex plane, does coincide with the experimental result,
constitutes the specific example of unreasonable effectiveness of mathematics we are referring to.

As one should expect, things do not turn out to be so simple and clear-cut in practice. Actually, one cannot assign a meaning to the absolute value of the zero-point energy, and any physically measurable effect is to be worked out as an energy difference between two situations, such as a quantum field in curved space as compared with the same field in flat space, or a field satisfying boundary conditions on some surface as compared with the same field in the absence of the surface, etc. This energy difference is the Casimir energy:

\[
E_C = E_0^{BC} - E_0 = \frac{1}{2} \left(\text{tr} H^{BC} - \text{tr} H \right).
\] (3)

And it is here where the problem appears. Imposing mathematical boundary conditions on physical quantum fields turns out to be a highly non-trivial act. This was discussed in much detail in a paper by Deutsch and Candelas a quarter of a century ago [5]. These authors quantized electromagnetic and scalar fields in the region near an arbitrary smooth boundary, and calculated the renormalized vacuum expectation value of the stress-energy tensor, to find that the energy density diverges as the boundary is approached. Therefore, regularization and renormalization did not seem to cure the problem with infinities in this case and an infinite physical energy was obtained if the mathematical boundary conditions were to be fulfilled. However, the authors argued that, in nature, surfaces have non-zero depth, and its value could be taken as a handy (dimensional) cutoff in order to regularize the infinities. This approach will be recovered later in the present paper. Just two years after Deutsch and Candelas’ work, Kurt Symanzik carried out a rigorous analysis of quantum field theory in the presence of boundaries [6]. Prescribing the value of the quantum field on a boundary means using the Schrödinger representation, and Symanzik was able to show rigorously that such representation exists to all orders in the perturbative expansion. He showed also that the field operator being diagonalized in a smooth hypersurface differs from the usual renormalized one by a factor that diverges logarithmically when the distance to the hypersurface goes to zero. This requires a precise limiting procedure, and also point splitting, to be applied. In any case, the issue was proven to be perfectly meaningful within the domains of renormalized quantum field theory. One should note that in this case the boundary conditions and the hypersurfaces themselves were always treated at the pure mathematical level (zero depth) by using delta functions.

More recently, a new approach to the problem has been postulated [7] which uses elements of the two methods above. Boundary conditions on a field, \(\phi \), are enforced on a surface, \(S \), by introducing a scalar potential, \(\sigma \), of Gaussian shape living on the surface (and near it). In the limit when the Gaussian becomes a delta function, the boundary conditions (Dirichlet, in this case) are enforced, in that the delta-shaped potential kills all the modes of \(\phi \) at the surface. For the rest, the quantum system undergoes a full-fledged quantum field theory renormalization, as in the case of Symanzik’s approach. The results obtained confirm those of [5], in the several models studied albeit they do not seem to agree with those of [6].

Such results are also in clear contradiction with the ones quoted in the usual textbooks and review articles dealing with the Casimir effect [8], where no infinite energy density when approaching any of the Casimir plates has been reported.
In the absence of a BC, the solutions to the field equation can be labeled by $k = +\sqrt{\omega^2 - m^2} > 0$, as

$$\phi_k(x) = Ae^{ikx} + Be^{-ikx},$$

with A, B arbitrary complex (for the general complex), or as

$$\phi_k(x) = a \sin(kx) + b \cos(kx),$$

with a, b arbitrary real (for the general real solution). Now, when the mathematical BC of Dirichlet type, $\phi(0) = 0$, is imposed, this does not influence at all the eigenvalues, k, which remain exactly the same (as stressed in the literature). However, the number of solutions corresponding to each eigenvalue is reduced by one half to:

$$\phi_k^{(D)}(x) = A(e^{ikx} - e^{-ikx}),$$

with A arbitrary complex (complex solution), and

$$\phi_k^{(D)}(x) = a \sin(kx),$$
with an arbitrary real (real solution). In other words, the energy spectrum (for \(\omega \)) that we obtain in both cases is the same, a continuous spectrum

\[
\omega = \sqrt{m^2 + k^2},
\]

but the number of eigenstates corresponding to a given eigenvalue is twice as big in the absence of the BC.\(^2\)

Of course these considerations are elementary, but they seem to have been put aside sometimes. They are crucial when trying to calculate (or just to give sense to) the Casimir energy density and force. More to the point, just in the same way as the traces of the two matrices \(M_1 = \text{diag}(\alpha, \beta) \) and \(M_2 = \text{diag}(\alpha, \alpha, \beta, \beta) \) are not equal in spite of having “the same spectrum \(\alpha, \beta \),” it also turns out that, in the problem under discussion, the traces of the Hamiltonian with and without the Diriclet BC imposed yield different results, both of them divergent,

\[
\text{tr} \, H = 2 \text{tr} \, H^{BC} = 2 \int_0^\infty dk \sqrt{m^2 + k^2}. \tag{10}
\]

By using the zeta function, we define

\[
\zeta^{BC}(s) := \int_0^\infty d\kappa (\nu^2 + \kappa^2)^{-s}, \quad \nu := \frac{m}{\mu},
\]

with \(\mu \) a regularization parameter with dimensions of mass.\(^3\) We get

\[
\zeta_{BC}(s) = \frac{\sqrt{\pi} \Gamma(s - 1/2)}{2 \Gamma(s)} (\nu^2)^{1/2-s}, \tag{12}
\]

and consequently,

\[
\text{tr} \, H^{BC} = \frac{1}{2} \zeta_{BC}(s = -1/2) = \frac{m^2}{4 \sqrt{\pi}} \left[\frac{1}{s + 1/2} + 1 - \gamma - \log \frac{m^2}{\mu^2} - \Psi(-1/2) + \mathcal{O}(s + 1/2) \right]_{s = -1/2}. \tag{13}
\]

As is obvious, this divergence is not cured when taking the difference of the two traces, Eq. (3), in order to obtain the Casimir energy:

\[
\frac{E_C}{\mu} = E_0^{BC} / \mu - E_0 / \mu = -E_0^{BC} / \mu = \frac{1}{8} \Gamma(-1) \frac{m^2}{\mu^2}. \tag{14}
\]

We just hit the pole of the zeta function, in this case.

\(^2\)To understand this point even better (by making recourse to what is learned in the maths classes at high school), consider the fact that further, by imposing Cauchy BC: \(\phi(0) = 0, \phi'(0) = 0 \), the eigenvalues remain the same, but for any \(k \) the family of eigenfunctions shrinks to just the trivial one: \(\phi_k(0) \equiv 0, \forall k \) (the Cauchy problem is an initial value problem, which completely determines the solution).

\(^3\)Always necessary in zeta regularization, since the complex powers of the spectrum of a (pseudo-) differential operator can only be defined, physically, if the operator is rendered dimensionless, what is done by introducing this parameter. That is also an important issue, which is sometimes overlooked.
How is this infinite to be interpreted? What is its origin? Just by making recourse to the pure mathematical theory (reine Mathematik), we already get a perfect description of what happens and understand well where does this infinite energy\(^4\) come from. It clearly originates from the fact that imposing the boundary condition has reduced to one-half the family of eigenfunctions corresponding to any of the eigenvalues which constitute the spectrum of the operator. And we can also advance that, since this dramatic reduction of the family of eigenfunctions takes place precisely at the point where the BC is imposed, the physical divergence (infinite energy) will originate right there, and nowhere else.

While the analysis above cannot be taken as a substitute for the actual modelization of Jaffe et al. [7] —where the BC is explicitly enforced through the introduction of an auxiliary, localized field, which probes what happens at the boundary in a much more precise way—it certainly shows that pure mathematical considerations, which include the use of analytic continuation by means of the zeta function, are in no way blind to the infinites of the physical model and do not produce misleading results, when the mathematics are used properly. And it is very remarkable to realize how close the mathematical description of the appearance of an infinite contribution is to the one provided by the physical realization [7].

3 The case of two-point Dirichlet boundary conditions

A similar analysis can be done for the case of a two-point Dirichlet BC:

\[\phi(a) = 0, \quad \phi(-a) = 0. \quad (15) \]

Straightforward algebra shows, in this situation, that the eigenvalues \(k \) are quantized, as \(k = \frac{\pi}{2a} \), so that:

\[\omega_\ell = \sqrt{m^2 + \frac{\ell^2 \pi^2}{4a^2}}, \quad \ell = 0, 1, 2, \ldots \quad (16) \]

The family of eigenfunctions corresponding to a given eigenvalue, \(\omega_\ell \), is of continuous dimension 1, exactly as in the former case of a one-point Dirichlet BC, namely,

\[\phi_\ell(x) = b \sin \left(\frac{\ell \pi}{2a} (x - a) \right), \quad (17) \]

where \(b \) is an arbitrary, real parameter.\(^5\) To repeat, the act of imposing Dirichlet BC on two points has the effect of discretizing the spectrum (as is well known) but there is no further shrinking in the number of eigenfunctions corresponding to a given (now discrete) eigenvalue.

The calculation of the Casimir energy, by means of the zeta function, proceeds in this case as follows [3, 4, 9, 10]. To begin with, it may be interesting to recall that the zeta-‘measure’

\(^4\)In mathematical terms, this infinite value for the trace of the Hamiltonian operator.

\(^5\)The contribution of the zero-mode (\(\ell = 0 \)) is controverted, but we are not going to discuss this issue here (see e.g. [11] and references therein.)
of the continuum equals twice the zeta-‘measure’ of the discrete. In fact, just consider the following regularizations:

$$\sum_{n=1}^{\infty} \mu = \mu \sum_{n=1}^{\infty} n^{-s} \bigg|_{s=0} = \mu \zeta_R(0) = -\frac{\mu}{2}. \quad (18)$$

and

$$\int_\mu^\infty dk = \int_0^\infty dk (k + \mu)^{-s} \bigg|_{s=0} = \frac{\mu^{1-s}}{s-1} \bigg|_{s=0} = -\mu. \quad (19)$$

The result is, as advanced, that the zeta ‘measure’ of the discrete is half that of the continuum.

The trace of the Hamiltonian corresponding to the quantum system with the BC imposed, in the massive case, is obtained by means of the zeta function

$$\zeta^{BC}(s) := \sum_{\ell=1}^{\infty} \left(\frac{m^2}{\mu^2} + \frac{\pi^2 \ell^2}{4 \mu^2 a^2} \right)^{-s}$$

$$= \left(\frac{\mu}{m} \right)^{2s} \left[-\frac{1}{2} + \frac{\Gamma(s-1/2)}{\Gamma(s)} \frac{am}{\sqrt{\pi}} + \frac{2\pi^s}{\Gamma(s)} \left(\frac{2am}{\pi} \right)^{1/2+s} \sum_{n=1}^{\infty} n^{s-1/2} K_{s-1/2}(4am) \right]. \quad (20)$$

Thus, for the zero point energy of the system with two-point Dirichlet BC, we get

$$\text{tr } H^{BC} / \mu = \frac{1}{2} \zeta_{BC}(s = -1/2) = -\frac{\Gamma(-1)m^2}{8\mu^2} - \frac{m}{2\pi \mu} \sum_{n=1}^{\infty} \frac{1}{n} K_1(2\pi nm/\mu), \quad (21)$$

where μ is, in this case, $\mu := \pi/(2a)$ (a fixes the mass scale in a natural way here). As in the previous example, we finally obtain an infinite value for the Casimir energy, namely

$$E_C / \mu = E_{0}^{BC} / \mu - E_{0}/\mu = \frac{\Gamma(-1)m^2}{8\mu^2} - \frac{m}{2\pi \mu} \sum_{n=1}^{\infty} \frac{1}{n} K_1(2\pi nm/\mu); \quad (22)$$

It is, therefore, not true that regularization methods using analytical continuation (and, in particular, the zeta approach) are unable to see the infinite energy that is generated on the boundary-conditions surface [5, 6, 7]. The reason is still the same as in the previous example: imposing a two-point Dirichlet BC amounts again to halving the family of eigenfunctions which correspond to any given eigenvalue (all are discrete, in the present case, but this makes no difference). In physical terms, that means having to apply an infinite amount of energy on the BC sites, in order to enforce the BC. In absolute analogy, from the mathematical viewpoint, halving the family of eigenfunctions immediately results in the appearance of an infinite contribution, under the form of a pole of the zeta function.

The reason why these infinities (the one here and that in the previous section) do not usually show up in the literature on the Casimir effect is probably because the textbooks on the subject focus towards the calculation of the Casimir force, which is obtained by taking the derivative of the energy density (or energy pressure) with respect to the plate separation (here w.r.t. a). Since the infinite terms do not depend on a, they do not contribute to the force (as is recognized explicitly in [7]). However, some erroneous statements have indeed appeared in the above mentioned classical references, stemming from the lack of recognition of the catastrophic implications of the act of halving the number of eigenfunctions, when imposing the BC. The persistence of the eigenvalues of the spectrum was probably misleading. We hope to have clarified this issue here.
4 How to deal with the infinities

Here, the infinite contributions have shown up at the regularization level, but a more careful study [7] was able to prove that they do not disappear even after renormalizing in a proper way. The important question is now: are these infinities physical? Will they be observed as a manifestation of a very large energy pressure when approaching the BC surface in a lab experiment? No doubt such questions will be best answered in that way, e.g. experimentally. If, on the contrary, that sort of large pressures fails to manifest itself, this might be a clear indication of the need for an additional regularization prescription. In principle, this seems to be forbidden by standard renormalization theory, since the procedure has been already carried out to the very end: there remains no additional physical quantity which could possibly absorb the divergences (see [7]).

In any case, there are circumstances —both in physics and in mathematics— where certain ‘non-orthodox’ regularization methods have been employed with promising success. In particular, Hadamard regularization in higher-post-Newtonian general relativity [12] and also in recent variants of axiomatic and constructive quantum field theory [13]. Among mathematicians, Hadamard regularization is nowadays a rather standard technique in order to deal with singular differential and integral equations with boundary conditions, both analytically and numerically (for a sample of references see [14]). Indeed, Hadamard regularization is a well-established procedure in order to give sense to infinite integrals. It is not to be found in the classical books on infinite calculus by Hardy or Knopp; it was L. Schwartz [15] who popularized it, rescuing Hadamard’s original papers. Nowadays, Hadamard convergence is one of the cornerstones in the rigorous formulation of QFT through micro-localization, which on its turn is considered by specialists to be the most important step towards the understanding of linear PDEs since the invention of distributions (for a beautiful, updated treatment of Hadamard’s regularization see [16]).

Let us briefly recall this formulation. Consider a function, \(g(x) \), expandable as

\[
g(x) = \sum_{j=1}^{k} \frac{a_j}{(x-a)^{\lambda_j}} + h(x),
\]

with \(\lambda_j \) complex in general and \(h(x) \) a regular function. Then, it is immediate that

\[
\int_{a+\epsilon}^{b} g(x) \, dx = P(1/\epsilon) + H(\epsilon),
\]

being \(P \) a polynomial and \(H(0) \) finite. If the \(\lambda_j \notin \mathbb{N} \), then one defines the Hadamard regularized integral as

\[
\int_{a}^{b} g(x) \, dx := \int_{a}^{b} h(x) \, dx - \sum_{j=1}^{k} \frac{a_j}{\lambda_j - 1} (b-a)^{1-\lambda_j}.
\]

Alternatively, one may define, for \(\alpha \notin \mathbb{N}, \ p < \alpha < p + 1 \), and \(f^{(p+1)} \in C_{[-1,1]} \),

\[
K^\alpha f := \frac{1}{\Gamma(-\alpha)} \int_{-1}^{1} \frac{f(t)}{(1-t)^{\alpha+1}} \, dt,
\]

8
to obtain, after some steps,

$$K^\alpha f = \sum_{j=0}^{p} \frac{f^{(j)}(-1)}{\Gamma(j + 1 - \alpha) 2^{\alpha-j}} + \frac{1}{\Gamma(p + 1 - \alpha)} \int_{-1}^{1} (1 - t)^{p-\alpha} f^{(p+1)}(t), \quad (27)$$

where the last integral is at worst improper (Cauchy's principal part). If $\lambda_1 = 1$, then the result is $a_1 \ln(b - a)$, instead.

If $\lambda_1 = p \in \mathbb{N}$, calling

$$H_p(f; x) := \int_{-1}^{1} \frac{f(t)}{(t - x)^{p+1}} \, dt, \quad |x| < 1, \quad (28)$$

we get

$$H_p(f; x) = \int_{-1}^{1} \left[f(t) - \sum_{j=0}^{p} \frac{f^{(j)}(x)}{j!(t-x)^j} \right] \frac{dt}{(t-x)^{p+1}} + \frac{f^{(j)}(x)}{j!} \int_{-1}^{1} \frac{dt}{(t-x)^{p+1-j}}, \quad (29)$$

where the first term is regular and the second one can be easily reduced to

$$\frac{1}{(p-j)!} \frac{d^{p-j}}{dx^{p-j}} \int_{-1}^{1} \frac{dt}{t-x}, \quad (30)$$

being the last integral, as before, a Cauchy PP.

An alternative form of Hadamard's regularization, which is more fashionable for physical applications (as is apparent from the expression itself) is the following [12]. For the case of two singularities, at \vec{x}_1, \vec{x}_2, after excising from space two little balls around them, $\mathbb{R}^3 \setminus (B_{r_1}(\vec{x}_1) \cup B_{r_2}(\vec{x}_2))$, with $B_{r_1}(\vec{x}_1) \cap B_{r_2}(\vec{x}_2) = \emptyset$, one defines the regularized integral as being the limit

$$\int d^3x \ F(\vec{x}) := \text{FP}_{\alpha,\beta \rightarrow 0} \int d^3x \left(\frac{r_1}{s_1} \right)^{\alpha} \left(\frac{r_2}{s_2} \right)^{\beta} F(\vec{x}), \quad (31)$$

where s_1 and s_2 are two (dimensionfull) regularization parameters [12]. This is the version that will be employed in what follows.

5 Hadamard regularization of the Casimir effect

We now use Hadamard's regularization as an additional tool in order to make sense of the infinite expressions encountered in the boundary value problems considered before. As it turns out from a detailed analysis of the results in [7] (which we shall not repeat here, for conciseness), the basic integrals which produce infinities, in the one-dimensional and two-dimensional cases there considered, are the following. In one dimension,

$$\int_{0}^{\infty} J_0(ax)^2 \arctan(bx) \, dx, \quad (32)$$

9
with \(J_0 \) a Bessel function. After some calculations, the Hadamard regularization of this integral yields the result\(^6\)

\[
\int_0^\infty J_0(ax^2) \arctan(bx) \, dx = \frac{\gamma + 3 \ln 2}{2a} + \frac{2}{b} \left[\gamma - \frac{2}{\sqrt{\pi}} \left(1 + \ln \frac{2b}{a} \right) h(a^2/b^2) \right],
\]

where \(h(z) := {}_2F_3 \left(1/2, 1/2; 1, 1, 3/2; z \right) \) and \(\gamma \) is the Euler-Mascheroni constant; in particular, \(h(1) = 1.186711 \), what is quite a nice value.

The two dimensional case turns out to be more singular \(^{[7]}\) —in part just for dimensional reasons— and requires additional wishful thinking in order to deal with the circular delta function sitting on the circumference where the Dirichlet BC are imposed. Here one encounters the basic singular integral (we use the same notation as in \(^{[7]}\))

\[
\tilde{\sigma}(p) = \int_0^\infty dr \, r J_0(pr) \sigma(r), \quad \sigma(r) = b\lambda \exp \left[-\frac{(r-a)^2}{2\omega^2} \right],
\]

with

\[
\int_0^\infty \sigma(r) \, dr = \lambda, \quad \sigma(r) \overset{\omega \to 0}{\longrightarrow} \lambda \delta(r-a).
\]

Hadamard’s regularization yields, in this case (the \(\tau \)'s replacing the \(\sigma \)'s in the regularized version),

\[
\tau(r, p) = c\lambda (r^2 + 1)^{-\omega/2} \exp \left[-\frac{(r-a)^2}{2\omega^2} \right] \overset{\omega \to 0}{\longrightarrow} \lambda \delta(r-a),
\]

with \(p \) a (dimensionfull) regularization parameter, being the constant \(c \) given by

\[
c^{-1} = \int_0^\infty dr \, r^{-\omega} \exp \left[-\frac{(r-a)^2}{2\omega^2} \right],
\]

which exists and is perfectly finite; in particular, \(c^{-1}(\omega = 1, a = 1) = .25 \). Then,

\[
\tilde{\tau}(p) = 2\pi \int_0^\infty dr \, J_0(pr) \tau(r, p) = 2\pi \lambda a (ap + 1)^{-\omega/2} J_0(ap)
\]

It turns out that for the Casimir energy we get in this case (notation as in \(^{[7]}\))

\[
E^{(2)}[\tau] = \frac{\lambda^2}{8} \int_0^\infty dp \, (ap + 1)^{-\omega} J_0(ap)^2 \arctan(p/2m) \bigg|_{\omega \to 0}
\]

\[
= \frac{1}{2\omega} + \int
\]

with \(\omega \) the width of the Gaussian \(\delta \), which is a very physical parameter to play with (cf. \([5]\)). When this width tends to zero an infinite energy appears (the width controls the formation

\(^6\)It should be pointed out, on passing, that the computational program Mathematica \([17]\) directly assigns the Hadamard regularized value to particular cases of integrals of this kind; but it does so without any hint on what is going on. This has often confused more one user, who fails to understand how it comes that an infinite integral gets a finite value out of nothing.
Concerning the finite part (second term), for the massless case one actually obtains the regularized result given in the classical books:

\[f = -\frac{\pi}{48a}, \]

(40)

while, in the massive case (mass \(m \)), the following fast convergent series result

\[f = -\frac{m}{2\pi} \sum_{k=1}^{\infty} \frac{1}{k} K_1(4akm), \]

(41)

being \(K_1 \) a modified Bessel functions of the third kind. Correspondingly, for the Casimir force we obtain the finite values

\[F^{(2)} = -\frac{\pi}{96a^2}, \]

(42)

and in the massive case

\[F^{(2)}_{(m)} = -\frac{m^2}{\pi} \sum_{k=1}^{\infty} \left[K_0(4akm) + \frac{1}{4akm} K_1(4akm) \right], \]

(43)

Those are the expressions obtained in the mentioned textbooks and ordinary references.

To summarize, Hadamard regularization yields indeed finite results which, in the cases considered, coincide with the values obtained using more classical, less full-fledged methods. Although the validity of this additional regularization is at present questionable, the fact that it bridges the two approaches is already remarkable, maybe again a manifestation of the unreasonable effectiveness of mathematics.

Acknowledgments
The author is indebted to the members of the Mathematics Department, MIT, where this work was completed, and specially to Dan Freedman, for warm hospitality. This investigation has been supported by DGICYT (Spain), project BFM2000-0810 and by CIRIT (Generalitat de Catalunya), grants 2002BEAI400019 and 2001SGR-00427.

References

