D-Branes

CLIFFORD V. JOHNSON

University of Durham

CAMBRIDGE UNIVERSITY PRESS
Contents

List of inserts

Preface

1 Overview and overture
 1.1 The classical dynamics of geometry 1
 1.2 Gravitons and photons 7
 1.3 Beyond classical gravity: perturbative strings 11
 1.4 Beyond perturbative strings: branes 15
 1.5 The quantum dynamics of geometry 19
 1.6 Things to do in the meantime 20
 1.7 On with the show 22

2 Relativistic strings
 2.1 Motion of classical point particles 24
 2.1.1 Two actions 24
 2.1.2 Symmetries 26
 2.2 Classical bosonic strings 27
 2.2.1 Two actions 27
 2.2.2 Symmetries 29
 2.2.3 String equations of motion 30
 2.2.4 Further aspects of the two dimensional perspective 31
 2.2.5 The stress tensor 35
 2.2.6 Gauge fixing 35
 2.2.7 The mode decomposition 37
 2.2.8 Conformal invariance as a residual symmetry 37
 2.2.9 Some Hamiltonian dynamics 38
2.3 Quantised bosonic strings 40
 2.3.1 The constraints and physical states 41
 2.3.2 The intercept and critical dimensions 42
 2.3.3 A glance at more sophisticated techniques 45
2.4 The sphere, the plane and the vertex operator 47
 2.4.1 States and operators 48
2.5 Chan–Paton factors 51
2.6 Unoriented strings 52
 2.6.1 Unoriented open strings 52
 2.6.2 Unoriented closed strings 54
 2.6.3 World-sheet diagrams 55
2.7 Strings in curved backgrounds 56
2.8 A quick look at geometry 61
 2.8.1 Working with the local tangent frames 61
 2.8.2 Differential forms 63
 2.8.3 Coordinate vs. orthonormal bases 65
 2.8.4 The Lorentz group as a gauge group 67
 2.8.5 Fermions in curved spacetime 68
 2.8.6 Comparison to differential geometry 68

3 A closer look at the world-sheet 70
 3.1 Conformal invariance 70
 3.1.1 Diverse dimensions 70
 3.1.2 The special case of two dimensions 73
 3.1.3 States and operators 74
 3.1.4 The operator product expansion 75
 3.1.5 The stress tensor and the Virasoro algebra 76
 3.2 Revisiting the relativistic string 80
 3.3 Fixing the conformal gauge 85
 3.3.1 Conformal ghosts 85
 3.3.2 The critical dimension 86
 3.4 The closed string partition function 87

4 Strings on circles and T-duality 94
 4.1 Fields and strings on a circle 94
 4.1.1 The Kaluza–Klein reduction 95
 4.1.2 Closed strings on a circle 96
 4.2 T-duality for closed strings 99
 4.3 A special radius: enhanced gauge symmetry 100
 4.4 The circle partition function 103
 4.5 Toroidal compactifications 104
4.6 More on enhanced gauge symmetry 108
4.6.1 Lie algebras and groups 108
4.6.2 The classical Lie algebras 111
4.6.3 Physical realisations with vertex operators 113
4.7 Another special radius: bosonisation 113
4.8 String theory on an orbifold 117
4.9 T-duality for open strings: D-branes 119
4.9.1 Chan–Paton factors and Wilson lines 121
4.10 D-brane collective coordinates 123
4.11 T-duality for unoriented strings: orientifolds 125
5 Background fields and world-volume actions 129
5.1 T-duality in background fields 129
5.2 A first look at the D-brane world-volume action 131
5.2.1 World-volume actions from tilted D-branes 133
5.3 The Dirac–Born–Infeld action 135
5.4 The action of T-duality 136
5.5 Non-Abelian extensions 136
5.6 D-branes and gauge theory 138
5.7 BPS lumps on the world-volume 138
6 D-brane tension and boundary states 141
6.1 The D-brane tension 142
6.1.1 An open string partition function 142
6.1.2 A background field computation 145
6.2 The orientifold tension 148
6.2.1 Another open string partition function 148
6.3 The boundary state formalism 150
7 Supersymmetric strings 155
7.1 The three basic superstring theories 155
7.1.1 Open superstrings: type I 155
7.1.2 Closed superstrings: type II 160
7.1.3 Type I from type IIB, the prototype orientifold 165
7.1.4 The Green–Schwarz mechanism 166
7.2 The two basic heterotic string theories 169
7.2.1 $SO(32)$ and $E_8 \times E_8$ from self-dual lattices 171
7.2.2 The massless spectrum 172
7.3 The ten dimensional supergravities 174
7.4 Heterotic toroidal compactifications 176
7.5 Superstring toroidal compactification 178
7.6 A superstring orbifold: discovering the K3 manifold 179
7.6.1 The orbifold spectrum 180
7.6.2 Another miraculous anomaly cancellation 183
7.6.3 The K3 manifold 184
7.6.4 Blowing up the orbifold 185
7.6.5 Some other K3 orbifolds 189
7.6.6 Anticipating D-manifolds 191

8 Supersymmetric strings and T-duality 192
8.1 T-duality of supersymmetric strings 192
8.1.1 T-duality of type II superstrings 192
8.1.2 T-duality of type I superstrings 193
8.1.3 T-duality for the heterotic strings 194
8.2 D-branes as BPS solitons 195
8.3 The D-brane charge and tension 197
8.4 The orientifold charge and tension 200
8.5 Type I from type IIB, revisited 201
8.6 Dirac charge quantisation 201
8.7 D-branes in type I 202

9 World-volume curvature couplings 205
9.1 Tilted D-branes and branes within branes 205
9.2 Anomalous gauge couplings 206
9.3 Characteristic classes and invariant polynomials 210
9.4 Anomalous curvature couplings 216
9.5 A relation to anomalies 218
9.6 D-branes and K-theory 220
9.7 Further non-Abelian extensions 221
9.8 Further curvature couplings 222

10 The geometry of D-branes 224
10.1 A look at black holes in four dimensions 224
10.1.1 A brief study of the Einstein–Maxwell system 224
10.1.2 Basic properties of Schwarzschild 225
10.1.3 Basic properties of Reissner–Nordstrom 228
10.1.4 Extremality, supersymmetry, and the BPS condition 228
10.1.5 Multiple black holes and multicentre solutions 232
10.1.6 Near horizon geometry and an infinite throat 233
10.1.7 Cosmological constant; de Sitter and anti-de Sitter 233
10.1.8 de-Sitter spacetime and the sphere 234
10.1.9 Anti-de Sitter in various coordinate systems 235
10.1.10 Anti-de Sitter as a hyperbolic slice 236
10.1.11 Revisiting the extremal solution 237
10.2 The geometry of D-branes 238
10.2.1 A family of ‘p-brane’ solutions 238
10.2.2 The boost form of solution 239
10.2.3 The extremal limit and coincident D-branes 240
10.3 Probing p-brane geometry with Dp-branes 243
10.3.1 Thought experiment: building p with Dp 243
10.3.2 Effective Lagrangian from the world-volume action 244
10.3.3 A metric on moduli space 245
10.4 T-duality and supergravity solutions 246
10.4.1 D(p + 1) from Dp 246
10.4.2 D(p − 1) from Dp 248

11 Multiple D-branes and bound states 249
11.1 Dp and Dp' from boundary conditions 249
11.2 The BPS bound for the Dp–Dp' system 252
11.3 Bound states of fundamental strings and D-strings 254
11.4 The three-string junction 255
11.5 Aspects of D-brane bound states 258
11.5.1 0–0 bound states 258
11.5.2 0–2 bound states 258
11.5.3 0–4 bound states 259
11.5.4 0–6 bound states 260
11.5.5 0–8 bound states 260

12 Strong coupling and string duality 261
12.1 Type IIB/type IIB duality 261
12.1.1 D1-brane collective coordinates 261
12.1.2 S-duality and SL(2, Z) 263
12.2 SO(32) Type I/heterotic duality 264
12.2.1 D1-brane collective coordinates 264
12.3 Dual branes from 10D string–string duality 265
12.3.1 The heterotic NS-fivebrane 267
12.3.2 The type IIA and type IIB NS5-brane 268
12.4 Type IIA/M-theory duality 271
12.4.1 A closer look at D0-branes 271
12.4.2 Eleven dimensional supergravity 271
12.5 $E_8 \times E_8$ heterotic string/M-theory duality 273
12.6 M2-branes and M5-branes 276
12.6.1 Supergravity solutions 276
12.6.2 From D-branes and NS5-branes to M-branes and back 277
12.7 U-duality 278
12.7.1 Type II strings on T^5 and $E_6(6)$ 278
12.7.2 U-duality and bound states 279

13 D-branes and geometry I 282
13.1 D-branes as probes of ALE spaces 282
13.1.1 Basic setup and a quiver gauge theory 282
13.1.2 The moduli space of vacua 285
13.1.3 ALE space as metric on moduli space 286
13.1.4 D-branes and the hyper-Kähler quotient 289
13.2 Fractional D-branes and wrapped D-branes 291
13.2.1 Fractional branes 291
13.2.2 Wrapped branes 292
13.3 Wrapped, fractional and stretched branes 294
13.3.1 NS5-branes from ALE spaces 295
13.3.2 Dual realisations of quivers 296
13.4 D-branes as instantons 300
13.4.1 Seeing the instanton with a probe 301
13.4.2 Small instantons 305
13.5 D-branes as monopoles 306
13.5.1 Adjoint Higgs and monopoles 309
13.5.2 BPS monopole solution from Nahm data 311
13.6 The D-brane dielectric effect 314
13.6.1 Non-Abelian world-volume interactions 314
13.6.2 Stable fuzzy spherical D-branes 316
13.6.3 Stable smooth spherical D-branes 318

14 K3 orientifolds and compactification 322
14.1 Z_N orientifolds and Chan-Paton factors 322
14.2 Loops and tadpoles for ALE Z_M singularities 324
14.2.1 One-loop diagrams and tadpoles 324
14.2.2 Computing the one-loop diagrams 325
14.2.3 Extracting the tadpoles 330
14.3 Solving the tadpole equations 333
14.3.1 T-duality relations 333
14.3.2 Explicit solutions 334
14.4 Closed string spectra 336
14.5 Open string spectra 339
14.6 Anomalies for $\mathcal{N} = 1$ in six dimensions 341
Contents

15 **D-branes and geometry II** 345
15.1 Probing p with $D(p - 4)$ 345
15.2 Probing six-branes: Kaluza–Klein monopoles and M-theory 346
15.3 The moduli space of 3D supersymmetric gauge theory 348
15.4 Wrapped branes and the enhançon mechanism 352
 15.4.1 Wrapping D6-branes 353
 15.4.2 The repulsion geometry 354
 15.4.3 Probing with a wrapped D6-brane 356
15.5 The consistency of excision in supergravity 360
15.6 The moduli space of pure glue in 3D 362
 15.6.1 Multi-monopole moduli space 363

16 **Towards M- and F-theory** 367
16.1 The type IIB string and F-theory 367
 16.1.1 $SL(2,\mathbb{Z})$ duality 368
 16.1.2 The (p,q) strings 369
 16.1.3 String networks 371
 16.1.4 The self-duality of D3-branes 373
 16.1.5 (p,q) Fivebranes 375
 16.1.6 $SL(2,\mathbb{Z})$ and D7-branes 376
 16.1.7 Some algebraic geometry 379
 16.1.8 F-theory, and a dual heterotic description 383
 16.1.9 (p,q) Sevenbranes 384
 16.1.10 Enhanced gauge symmetry and singularities of K3 386
 16.1.11 F-theory at constant coupling 387
 16.1.12 The moduli space of $\mathcal{N} = 2$ $SU(N)$ with $N_f = 4$ 392
16.2 M-theory origins of F-theory 394
 16.2.1 M-branes and odd D-branes 396
 16.2.2 M-theory on K3 and heterotic on T^3 399
 16.2.3 Type IIA on K3 and heterotic on T^d 400
16.3 Matrix theory 400
 16.3.1 Another look at D0-branes 401
 16.3.2 The infinite momentum frame 402
 16.3.3 Matrix string theory 404

17 **D-branes and black holes** 409
17.1 Black hole thermodynamics 409
 17.1.1 The path integral and the Euclidean calculus 409
 17.1.2 The semiclassical approximation 411
 17.1.3 The temperature of black holes 412
Contents

17.2 The Euclidean action calculus 414
 17.2.1 The action for Schwarzschild 414
 17.2.2 The action for Reissner–Nordström 416
 17.2.3 The laws of thermodynamics 417
17.3 $D = 5$ Reissner–Nordström black holes 418
 17.3.1 Making the black hole 420
 17.3.2 Microscopic entropy and a 2D field theory 425
 17.3.3 Non-extremality and a 2D dilute gas limit 427
17.4 Near horizon geometry 429
17.5 Replacing T^4 with K3 432
 17.5.1 The geometry 432
 17.5.2 The microscopic entropy 433
 17.5.3 Probing the black hole with branes 434
 17.5.4 The enhançon and the second law 437

18 D-branes, gravity and gauge theory 440
18.1 The AdS/CFT correspondence 441
 18.1.1 Branes and the decoupling limit 441
 18.1.2 Sphere reduction and gauged supergravity 443
 18.1.3 Extracts from the dictionary 446
 18.1.4 The action, counterterms, and the stress tensor 449
18.2 The correspondence at finite temperature 452
 18.2.1 Limits of the non-extremal D3-brane 452
 18.2.2 The AdS–Schwarzschild black hole in global coordinates 453
18.3 The correspondence with a chemical potential 455
 18.3.1 Spinning D3-branes and charged AdS black holes 455
 18.3.2 The AdS–Reissner–Nordström black hole 459
 18.3.3 Thermodynamic phase structure 459
18.4 The holographic principle 464

19 The holographic renormalisation group 467
19.1 Renormalisation group flows from gravity 467
 19.1.1 A BPS domain wall and supersymmetry 469
19.2 Flowing on the Coulomb branch 472
 19.2.1 A five dimensional solution 472
 19.2.2 A ten dimensional solution 475
 19.2.3 Probing the geometry 475
 19.2.4 Brane distributions 478
19.3 An $\mathcal{N} = 1$ gauge dual RG flow 480
 19.3.1 The five dimensional solution 482
Contents

19.3.2 The ten dimensional solution 486
19.3.3 Probing with a D3-brane 487
19.3.4 The Coulomb branch 488
19.3.5 Kähler structure of the Coulomb branch 489

19.4 An $\mathcal{N} = 2$ gauge dual RG flow and the enhançon 494
19.4.1 The five dimensional solution 494
19.4.2 The ten dimensional solution 498
19.4.3 Probing with a D3-brane 499
19.4.4 The moduli space 500

19.5 Beyond gravity duals 502

20 Taking stock 504

References 510

Index 529