Three-body Thomas-Ehrman shifts of analog states of ^{17}Ne and ^{17}N

E. Garrido integ57@pinar2.csic.es Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

D.V. Fedorov A.S. Jensen Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

Abstract The lowest-lying states of the Borromean nucleus ^{17}Ne ($^{15}\text{O}+p+p$) and its mirror nucleus ^{17}N ($^{15}\text{N}+n+n$) are compared by using the hyperspheric adiabatic expansion. Three-body resonances are computed by use of the complex scaling method. The measured size of ^{15}O and the low-lying resonances of ^{16}F ($^{15}\text{O}+p$) are first used as constraints to determine both central and spin-dependent two-body interactions. The interaction obtained reproduces relatively accurately both experimental three-body spectra. The Thomas-Ehrman shifts, involving excitation energy differences, are computed and found to be less than 3% of the total Coulomb energy shift for all states.