abstract The decay rate of a triaxially-deformed proton emitter is calculated in a particle-rotor model, which is based on a deformed Woods-Saxon potential and includes a deformed spin-orbit interaction. The wave function of the $I = 7/2^-$ ground state of the deformed proton emitter 141Ho is obtained in the adiabatic limit, and a Green’s function technique is used to calculate the decay rate and branching ratio to the first excited 2^+ state of the daughter nucleus. Only for values of the triaxial angle $\gamma < 5^\circ$ is good agreement obtained for both the total decay rate and the 2^+ branching ratio.