A Simple Signal of Noncommutative Space

Ciprian Sorin Acatrinei∗
Department of Physics, University of Crete,
P.O. Box 2208, Heraklion, Greece

November 12, 2003

Abstract

We propose a simple low-energy classical experiment in which the
effects of noncommutativity can be clearly separated from commu-
tative physics. The ensuing bound on the noncommutative scale is
remarkable, especially in view of its elementary derivation.

Noncommutative mechanics has recently been under intensive investiga-
tion [1, 2]. It uses the following basic commutators for the coordinates q_i and
momenta p_i,

$$
[q_i, q_j] = i\theta_{ij}, \quad [q_i, p_j] = i\delta_{ij}, \quad [p_i, p_j] = iF_{ij},
$$

(1)

which are a generalization of the Heisenberg commutation relations. The
time evolution of an operator follows from its commutator with the prescribed
Hamiltonian. In the classical case the commutators in (1) are replaced by
Poisson brackets,

$$
\{q_i, q_j\} = \theta_{ij}, \quad \{q_i, p_j\} = \delta_{ij}, \quad \{p_i, p_j\} = F_{ij}.
$$

(2)

Above, δ_{ij} is a unit matrix, whereas F_{ij} and θ_{ij} are functions of both the
coordinates and the momenta, to be restricted only by the Jacobi identities.
This note will consider the case in which θ is a nonvanishing constant diagonal
matrix, whereas a generic $F(q_i, p_j)$ is allowed. A dynamical effect due to the
gradient of F will be reported. For simplicity in presentation we will work
in two dimensions, $i, j = 1, 2$ in (2), although our considerations extend

∗On leave from: National Institute of Nuclear Physics and Engineering - P.O. Box
MG-6, 76900 Bucharest, Romania; e-mail: acatrine@physics.uoc.gr.
straightforwardly to any space dimensionality. Lower case latin indices will always take two values, e.g. \(i, j, k, s, t = 1, 2\), and no distinction will be necessary between up and down indices in the following. In two dimensions the only nontrivial Jacobi identities read, with the notation \(\theta_{12} = -\theta_{21} \equiv \theta\),

\[
\partial_{p_i} F = -\theta \partial_{q_i} F, \quad \partial_{p_j} F = \theta \partial_{q_j} F.
\] (3)

The above relations ensure the invariance of Eqs. (2) under time evolution. Once we disregard the constant \(F\) solution \(^1\), (3) implies that \(F\) is a function of the combinations \(\bar{q}_1 = q_1 + \theta p_2\) and \(\bar{q}_2 = q_2 - \theta p_1\), in brief \(F = F(\bar{q}_1, \bar{q}_2) = F(q_1 + \theta ij p_j)\). If \(\theta\) is then assumed to be small, which is the maximum the real world allows for, one has

\[
F(\bar{q}_i) = F(q_i + \theta ij p_j) = F(q_i) + \theta st p_t \partial_{q_i} F_{ij}(q) \big|_{q_i = q_i}.
\] (4)

To see the consequences of such an expression, consider the equations of motion for a free Hamiltonian \(H = \frac{p^2}{2m}\),

\[
m\ddot{q}_i = m\{q_i, H\} = p_i, \quad m\ddot{p}_i = m\{p_i, H\} = F_{ij}(q_s + \theta st p_t) p_j,
\] (5)

where \(\frac{df}{dt} \equiv \dot{f}\). If \(\theta = 0\), \(F_{ij}\) just provides a magnetic field of intensity \(F_{ij}(q)\). If \(\theta\) is small, (4) implies that

\[
m\ddot{q}_i = F(q^s + \theta st p_t)_{ij} \dot{q}_j \simeq F(q^s)_{ij} \dot{q}_j + m\partial_s F_{ij}(q) \theta st \dot{q}_i \dot{q}_j.
\] (6)

Eq. (6) displays the superposition of a usual electromagnetic background, linear in the velocity, and of a force proportional to the mass and quadratic in the velocities, \(\partial_s F(q)_{mj} \theta st \dot{q}_i \dot{q}_j\) – echoing gravity. However \(\gamma_{ij}^s \equiv \partial_s F(q)_{mj} \theta st\) simulates a gravitational connection only in a particular reference frame, since \(\gamma_{ij}^s\) does not behave like a Christoffel symbol under generalized coordinate transformations.

Experimentally speaking, it is important that a nonzero \(\theta\) requires a non-constant \(F\) to be a function of both position and velocity, \(F(q, p)\). This suggests that noncommutativity could be seen through the effects of the additional term in (6). A simple experiment is actually possible and provides - given its elementary character - a remarkably good bound for \(\theta\).

Consider the 2-dimensional case of motion on a plane labelled by coordinates \(q_1 = x, q_2 = y\), with velocities \(v_x = \dot{x} = p_1/m, v_y = \dot{y} = p_2/m\), and assume a magnetic field of spatial dependence \(F(x, y) = B \cdot e(y)\), with \(e(y)\) the Heaviside step function, \(e(y) = 1\) if \(y \geq 0\), \(e(y) = 0\) if \(y < 0\), \(\frac{de(y)}{dy} = \delta(y)\). \(B\) is constant. The set-up is sketched in figure 1a.

\(^1\)Experimentally \(F\) is never constant throughout all space, moreover the effect we are after arises when \(\nabla F \neq 0\).
At the point P a particle with initial velocity \vec{v}_0 passes from the lower half-plane (with vanishing magnetic field) into the upper half-plane, which has magnetic field B. At that same point the particle’s velocity changes to \vec{v}' if $\theta \neq 0$, as will be seen; subsequently the usual commutative circular motion in a magnetic field B follows. While exiting the superior half-plane at point P', the velocity will change to a final \vec{v}. Explicitly, Eq. (6) leads to

$$m\ddot{x} - F(y)\dot{y} = -m\theta B\delta(y)\dot{x}, \quad m\ddot{y} + F(y)\dot{x} = m\theta B\delta(y)\dot{x}^2. \quad (7)$$

Using $\delta(y) = \delta(v_y t) = \frac{\delta(t)}{|v_y|}$, one has

$$m\ddot{x} - F(y)v_y = -m\theta B\delta(t)\dot{x} \frac{v_y}{|v_y|}, \quad m\ddot{y} + F(y)v_x = m\theta B\delta(t) \frac{v_x^2}{|v_y|}. \quad (8)$$

Integrating from $t = -\epsilon$ to $t = \epsilon$ (and taking $\epsilon \to 0$), one obtains

$$v'_x = v_x(1 - \theta B), \quad v'_y = v_y(1 + \theta B \frac{v_x^2}{v_y^2}). \quad (9)$$

As long as the velocity has a component orthogonal to the magnetic field gradient, i.e. if $v_x \neq 0$, an instantaneous velocity change of order θ takes place at the point at which the particle enters the magnetic field. No instantaneous displacement appears. The change in kinetic energy is only of order θ^2, $(v'_x)^2 + (v'_y)^2 = v_x^2 + v_y^2 + \theta^2 B^2 (v_x^2 + v_x^4/v_y^2)$. The opposite mechanism works while the particle exits the magnetic field region. This would render the correction quadratic in θ, hence quite small. To avoid that, figure 1b proposes a slightly modified configuration, which allows the particle to exit the magnetic field along the gradient. In this case no unconventional velocity shift occurs, and the particle keeps the $O(\theta)$ correction (9), with $v_x = v'_x = v'_x$, $v_y = v'_y = -v'_y$.

It is important that the noncommutative correction (9) depends also on the ratio $\frac{v_x^2}{v_y^2}$; this allows us to choose a favorable situation. Assuming that experimental control can be maintained for velocity ratios $\frac{v_x}{v_y} \sim 10^5$, a field
$B \sim 1T$, and considering a proton of mass m_p and charge $1.6 \times 10^{-19} C$, one sees total reflection along the line PP' if at least
\[\sqrt{\theta} \sim 2 \times 10^{-13} \text{ meters}. \] (10)

Although this preliminary bound may not seem a very strong one, compared to the $10^{-18} m$ presently reached in particle accelerators, it is remarkable that a simple, classical, low-energy - hence cheap - set-up could achieve that. Moreover, the bound can be significantly improved by constructing a system of magnets designed to keep the proton under periodic motion. Individually, each magnet will act on the charged particle as in figure 1b. The velocity shifts will always add, rendering the bound cumulative. Then, $10^2 N$ revolutions will further decrease the bound on $\sqrt{\theta}$ by a factor of 10^{-N}. One may also measure corrections of about one per cent in the velocity shift (9), and not of order one as total reflection required. The above considerations lead to a theoretical bound
\[\sqrt{\theta} \sim 2 \times 10^{-14-N} \text{ meters}, \] (11)
where $10^2 N$ is the number of revolutions performed by the particle inside the system of magnets. According to experience with the much higher energies used at particle accelerators, $N = 5$ appears to be easily achievable, pushing the noncommutativity scale in the TeV regime: $\Lambda_{NC} \equiv \theta^{-1/2} \sim 1TeV$. This gives a bound similar to the much more complex best estimates performed either via quantum mechanical [2] or quantum field theoretic [3] techniques. Stronger claims [4] are manifestly based on involved considerations of radiative corrections. The bound (11) will of course be affected by experimental errors or difficulties. A realistic set-up will most probably require numerical work in order to follow the trajectories in a real magnetic field, which cannot be as simple as in figures 1a,b.

Although the above low-energy, cumulative, classical experiment might seem attractive, it is likely that the interference effects characteristic of quantum mechanics, associated with the choice of a convenient set-up, will further improve the bound. This is currently under investigation. The main purpose of this note has been to demonstrate a clear effect of classical noncommutativity – anomalous deflection in magnetic field gradients – in as simple a system as possible.

Acknowledgements

It is a pleasure to thank K.N. Anagnostopoulos, G.G. Athanasiu and T.N. Tomaras for useful discussions. This project was partly supported by a European Community individual Marie Curie fellowship, under contract HPMF-CT-2000-1060. The subsequent hospitality of Prof. Tomaras at Crete University is gratefully acknowledged.
References

