Isotopic Yields and Isoscaling in Fission

W.A. Friedman Department of Physics, University of Wisconsin, Madison, WI 53706, USA

abstract

A simple model is proposed to examine the isotopic yields of the fragments from binary fission. For a given charge partition the peaks and widths in the isotope distributions are studied both with the liquid-drop model and with shell modifications. The basis for isoscaling is also explored. The symmetry energy plays a dominant role in both the distributions and the isoscaling behavior. A systematic increase in the isoscaling parameter, α, with the proton number of the fragment element is predicted in the context of the liquid-drop model. Deviations arising from shell corrections are explored.