Quantum corrected electron holes

A. Luque and H. Schamel

Physikalisches Institut, Universität Bayreuth, D–95440 Bayreuth, Germany

R. Fedele

Dipartimento di Scienze Fisiche, Università di Napoli and INFN Sezione di Napoli,
Complesso Universitario di M. S. Angelo, Via Cintia, I–80126 Napoli, Italy
(Dated: February 21, 2009)

Abstract

The theory of electron holes is extended into the quantum regime. The Wigner–Poisson system is solved perturbatively based in lowest order on a weak, standing electron hole. Quantum corrections are shown to lower the potential amplitude and to increase the number of deeply trapped electrons. They, hence, tend to bring this extreme non–equilibrium state closer to thermodynamic equilibrium, an effect which can be attributed to the tunneling of particles in this mixed state system.

PACS numbers: 52.35.Sb, 52.35.Fp, 05.60.Gg, 03.65.Sq
Quantum plasmas have recently attracted considerable attention. Non-ideal, dense plasmas generated e.g. in the ultraintense laser–solid interaction certainly belong to this category. However, also ideal, dilute plasmas –the addressee of this letter– can exhibit a quantum behavior. One reason is that the miniaturization of today’s micro- and nano-electronic components has reached a level such that the system length becomes comparable with the de Broglie wavelength, in which case tunneling effects are no longer negligible. Also, states in combined traps attained by particles and their anti–particles used to form anti–hydrogen may be modelled by a plasma having quantum features. Other examples can easily be found, and some of them will be mentioned further below. Hence, classical transport models will unlikely be sufficient to describe the plasma behavior in such devices adequately. Generally the main focus in this respect is the collective charge carrier transport which has been shown to be increased by the presence of coherent structures such as hollow phase space vortices. The latter are also called holes in plasma physics because of their associated density depression exhibiting a remarkable robustness and stability.

Before studying the quantum corrections to such holes let us review some further dilute many particle systems and related disciplines that reveal quantum aspects. Charged–particle beams in particle accelerators are typically dilute systems, so quantum effects are usually disregarded. However, a spectrum of phenomena, which recently became more and more important, reveals the existence of several quantum aspects of beam physics connecting the physics of particle accelerator with the frontiers of several disciplines, such as (for instance) plasma physics, radiation beam physics, astrophysics, mesoscopic and condensate physics. Most of these phenomena introduce a sort of quantum correction to the leading classical behavior of the system. For example, quantum excitation plays a role for the long–term stability of longitudinal electron beam dynamics in the high–energy circular accelerating machines while the Sokolev–Ternov effect of spin polarization of electron and proton beams is a manifestation, at the macroscopic level, of the single quantum nature of the beam particles. Numerical phase space investigations based on tracking with the quantum map have shown that quantum corrections can substantially affect the particle beam trajectories in the vicinity of the separatrix.

Recently quantumlike methodologies have been applied to a number of classical physical situations, in which is replaced by another characteristic parameter of the problem considered. For instance, they have been applied to accelerator physics, to plasma physics, to surface gravity wave physics and to nonlinear optics in an attempt to describe linear and nonlinear problems of the dynamics of beams and large amplitude wavepackets.

In principle, all these problems can be formulated, in the configuration space, in terms of...
a system of Zakharov equations, i.e. nonlinear Schrödinger–like equation coupled with one (or more) equation(s) taking into account the reaction of the environment. The corresponding phase space description is the one provided by the Wigner–Moyal quasidistribution \[19 \] whose evolution equation, the von Neumann equation, plays the role of a kinetic–like equation associated with the system.

Analytically, the framework under which Wigner–Moyal quasidistributions have been mostly considered so far is that of particles interacting with a given external e.g. parabolic potential to analyze coherent and squeezed states. Furthermore, a quantum-like phase space analysis of a paraxial–charged–particle beam transport, travelling through a quadrupole-like device with small sextupole and octupole aberrations, has been carried out showing a satisfactory agreement with the results of the standard tracking simulations \[20 \] and, consequently, the suitability of using the quantum phase–space formalism in particle accelerators. This has been done within the framework of the thermal wave model \[15 \]. Quantum-like corrections involved in the von Neumann equation have been discussed for paraxial beams of both particles and radiation and compared with the standard classical description \[21 \].

Particles in quantum plasmas moving in their own, self–consistent potential, on the other hand, have not been given much attention so far. An exception are self–consistent but linearized solutions of the Wigner–Poisson system, dealing with quantum corrections to Landau damping of Langmuir waves \[22 \] or to the two–stream instability by means of the Nyquist method \[23 \], and the self–consistent linearized solution of the Wigner–Moyal kinetic–like equation for Langmuir wavepackets coupled with the ion–acoustic wave equation \[24 \]. In particular, the Wigner–Moyal kinetic–like description is suitable for describing the Benjamin–Feir instability (modulational instability) as well as predicting the stabilizing effect of a sort of Landau damping. It is well known that the latter cannot be shown in configuration space, where the the system is usually described by the Zakharov equations. By using the pure state formalism, a Landau–type damping has been shown for the longitudinal dynamics of both charged–particle coasting beams and e.m. wavetrains in high–energy circular accelerators and nonlinear media, respectively \[25 \]. A similar approach has been extended (mixed state formalism) to ensembles of partially–incoherent waves in different physical situations \[24, 26, 27 \].

The aim of this paper is to describe an electron–ion unmagnetized plasma, in which, on the basis of the experimental evidences as well as on theoretical and numerical investigations mentioned above, the quantum nature of the particles is not disregarded. However, it is taken into account only as a weak (perturbative) effect in comparison to the leading classical behavior of the system.
Together with the weak quantum effect, we take into account the usual classical electrostatic collective plasma effects coming from the standard meanfield approximation of the coulombian interaction, in such a way that our system is described by a set of coupled equation comprising the von Neumann equation for the Wigner–Moyal quasidistribution and Poisson’s equation. Hereafter, we will refer to this system of equations as WP–system (Wigner–Poisson system). Our goal is to find a self consistent solution of the WP–system to the lowest order of the quantum correction. Before formulating our problem in detail, it is worth mentioning some further considerations starting from the classical case.

Classically, electron and ion holes are nonlinear, stationary solutions of the Vlasov–Poisson system (VP–system) being omnipresent structures in many driven, collisionless plasmas. They are found in one or other variant in the laboratory [7, 28, 29], in particle accelerators [30, 31], in the laser–plasma interaction [32] and in the extraterrestrial space [33]. Analytical solutions, applicable to kinetic hole structures found in particle accelerators, have been presented in [34].

Generally speaking, the fundamental role of holes arises from the fact that they can nonlinearly destabilize a plasma even in linearly stable situations, namely if they posses a negative energy character [35, 36]. There is hence accrued interest to extend the studies of holes into the quantum domain, which means that the WP–system has to be employed instead.

In recent numerical studies [37] a multistream model for a current–driven quantum plasma has been applied. Signatures of coherent hole structures appear in the simulation of a statistical mixture of many pure states, with each wave function obeying the Schrödinger–Poisson system. That this system is equivalent to the mixed state WP–system has been shown in [38]. To the best of our knowledge, an analytic self–consistent nonlinear solution of the WP–system is still missing in the literature.

In this letter we present a first rigorous nonlinear self–consistent solution of the WP–system assuming weak nonlinearity and proximity to the classical VP–system. First we shall refer to the classical e–hole and then study quantum corrections, for which a self–consistent solution is derived.

We are first investigating a standing, classical e–hole which is the simplest inhomogeneous stationary solution of the VP–system for a plasma with immobile ions:

\[
[v \partial_x + \phi'(x) \partial_v] f(x, v) = 0, \quad (1a)
\]

\[
\phi'' = \int dv f(x, v) - 1 := n_e(x) - 1, \quad (1b)
\]
where \(f(x,v) \) is the distribution function of electrons in phase space. Here space, velocity and density are normalized by the electron Debye length \(\lambda_D = (kT_e/4\pi n_0 e^2)^{1/2} \), the electron thermal velocity \(v_{th} = (kT_e/m_e)^{1/2} \) and the homogeneous electron density, \(n_0 \), where \(m_e \) is the mass of the electrons and \(T_e \) is their temperature.

In thermal equilibrium, the plasma adopts a homogeneous state with a Maxwellian distribution in velocities \(f_M(x,v) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{v^2}{2}\right) \). Referring to the potential method \[39\], we solve (1a) by

\[
f(x,v) = \frac{1}{\sqrt{2\pi}} \left[\exp(-E)\theta(E) + \exp(-\beta E)\theta(-E) \right],
\]
where \(E = v^2/2 - \phi \) represents the single electron energy. The separatrix \(E = 0 \) in phase space distinguishes the free \((E > 0) \) from the trapped \((E < 0) \) electron population. Note that \(f \) in (2), reduces to \(f_M \) as \(\phi \to 0 \). The electron density in the weak amplitude regime can be written as a half power expansion of \(\phi \) \[5, 39\],

\[
n_e(\phi) = 1 + \phi - \frac{4(1 - \beta)}{3\sqrt{\pi}} \phi^{3/2} + O(\phi^2).
\]

Defining the pseudo–potential as \(-V'(\phi) := n_e(\phi) - 1\), we find from (3) with \(V(0) = 0 \)

\[
-V(\phi) = \frac{\phi^2}{2} \left(1 - \frac{16(1 - \beta)}{15\sqrt{\pi}} \sqrt{\phi} \right).
\]

It has to fulfill two necessary conditions: (a) \(V(\phi) < 0 \) in \(0 < \phi < \psi \) and (b) \(V(\psi) = 0 \), where \(\psi \) is the amplitude of the perturbation in the potential, which is assumed to be small, \(\psi \ll 1 \). From (b) we arrive at \(-\beta = 15\sqrt{\pi}/16\sqrt{\psi} - 1 \approx 15\sqrt{\pi}/16\sqrt{\psi} \ll 1 \). Therefore, \(\beta \) has to be a large negative number, corresponding to a depletion of the distribution in the trapped particle range. On the other hand, equation (4) allows us to integrate Poisson’s equation (1b), and we obtain the bell–shaped electrostatic potential:

\[
\phi(x) = \psi \text{sech}^4\left(\frac{x}{4}\right).
\]

Note that other electrostatic structures such as propagating electron holes, ion holes or periodic nonlinear waves (cnoidal waves) can also be found by appropriate extensions of this method \[5, 6, 39\].

To study quantum corrections, we start with Wigner’s quasidistribution which satisfies the time independent von Neumann or quantum Liouville equation \[19\]:

\[
v\partial_x f + \frac{1}{i\varepsilon} \left[\phi \left(x + \frac{i\varepsilon}{2} \partial_v \right) - \phi \left(x - \frac{i\varepsilon}{2} \partial_v \right) \right] f = 0,
\]
where \(\varepsilon \) is the dimensionless Planck’s constant.

\[\varepsilon = \frac{\hbar}{m_e v_{th} \lambda_D}.
\]
Assuming that \(\varepsilon \) is small, i.e. the quantum effects appear only as corrections to the classical solution, we can perform a power expansion of the potential operator \(\phi(x \pm i\varepsilon \partial_x) \) which we insert into (6). All even terms cancel out and we get up to the third order

\[
v\partial_x f + \phi'(x)\partial_v f - \frac{\varepsilon^2}{3!4}\phi'''(x)\partial_v^3 f = 0,
\]

which is the equation we have to couple with (1b).

As we keep terms up to \(O(\varepsilon^2) \), we will look for corrections of the same order in the potential and in the distribution function,

\[
f = f_0 + \varepsilon^2 f_1, \quad \phi = \phi_0 + \varepsilon^2 \phi_1,
\]

with \(f_0 \) and \(\phi_0 \) representing now (2) and (5) respectively. Inserting this ansatz into (7) and (1b) neglecting again terms of \(O(\varepsilon^4) \) we find

\[
[v\partial_x + \phi_0'(x)\partial_v] f_1 = -\phi_1'(x)\partial_v f_0 + \frac{1}{3!4}\phi_0''(x)\partial_v^3 f_0,
\]

\[
(8a)
\]

\[
\partial^2_x \phi_1(x) = \int dv f_1.
\]

(8b)

By defining \(g(x, v) := f_1 + \phi_1 \partial_E f_0 \), we can reduce equations (8a) and (8b) to the somewhat simpler system

\[
[v\partial_x + \phi_0'(x)\partial_v] g = \frac{1}{3!4}\phi_0''(x)\partial_v^3 f_0 =: h(v, x),
\]

\[
(9a)
\]

\[
\phi_1'(x) + V''(\phi_0)\phi_1(x) = \int_{-\infty}^{+\infty} dv g(x, v),
\]

\[
(9b)
\]

Now it is convenient to switch into a new set of variables defined by \(\xi = x, \ E = \frac{v^2}{2} - \phi_0(x), \ σ = \text{sg}(v) \) and rewrite \(h(x, v) = H(\xi, E, σ), \ g(x, v) = G(\xi, E, σ) \). With these variables, (9a) becomes \(\partial_\xi G(\xi, E, σ) = H(\xi, E, σ)/v(\xi, E, σ) \), whose general solution is

\[
G(\xi, E, σ) = G(0, E, σ) + \int_{0}^{\xi} d\xi' \frac{H(\xi', E, σ)}{v(\xi', E, σ)},
\]

\[
(10)
\]

where \(v(\xi, E, σ) = σ\sqrt{2[E + \phi_0(\xi)]} \). Therefore, in order to find \(G \) we only have to integrate \(H(\xi, E, σ)/v(\xi, E, σ) \) along the classical particle trajectories given by \(E = \text{const.} \). In this expression we have chosen the lower integration limit as \(\xi = 0 \) because this is the only point which is reached by all trajectories (see below). Note that a trapped particle will move along a closed, bounded trajectory around the origin in phase space.
Now we need to replace $H(\xi, E, \sigma)$ by its full expression. Denoting f in Eq. (2) as $f_0(E)$ we get by differentiation
\[
\partial_\xi^3 f_0 = \frac{1}{\sqrt{2\pi}} v \left\{ [3 - 2(E + \phi_0)] e^{-E} \theta(E) + \beta^2 [3 - 2\beta(E + \phi_0)] e^{-\beta E} \theta(-E) \\
- \left[3(1 - \beta) - 2\phi_0(1 - \beta^2) \right] \delta(E) - 2(E + \phi_0)(1 - \beta) \delta'(E) \right\} \\
=: \frac{1}{\sqrt{2\pi}} v(\xi, E, \sigma) \Omega(\xi, E).
\] (11)

For positive energies, we can follow the trajectories up to any ξ in (10) and, assuming that the correction vanishes at $\xi \to \pm \infty$, we arrive at
\[
G(0, E, \sigma) = \int_{-\infty}^{0} d\xi' \frac{H(\xi', E, \sigma)}{v(\xi', E, \sigma)} = \frac{1}{3!4\sqrt{2\pi}} \int_{-\infty}^{0} d\xi' \phi'''_0(\xi') \Omega(\xi', E).
\] (12)

Note that this expression does no longer depend on σ. For negative energies $G(0, E, \sigma)$ is not determined by such a procedure but, due to the symmetry of the problem we can assume that it will also be σ-independent. On the other side, we can always extend the integration of (10) to $-\infty$ for negative energies also as long as we change the integration constant. Therefore we have, for any E,
\[
G(\xi, E, \sigma) = G(\xi, E) := \frac{1}{3!4\sqrt{2\pi}} \left[G_0(E) + \int_{-\infty}^{\xi} d\xi' \phi'''_0(\xi') \Omega(\xi', E) \right],
\] (13)

with $G_0(E) = 0$ for $E > 0$.

Note that $\partial_E f_0$ is discontinuous at $E = 0$. Therefore, $G(\xi, E)$ does not have a definite value at the separatrix. Our approach will be to solve (11) for positive and negative energies separately and then put both solutions together imposing the continuity of f_1 at the separatrix.

In order to integrate (13), we consider these two different cases:

1. For $E > 0$ we have $G_0(E) = 0$ and $\Omega(\xi, E) = [3 - 2(E + \phi_0(\xi))] e^{-E}$. The integral (13) can be performed analytically to yield
\[
G(\xi, E) = \frac{1}{3!4\sqrt{2\pi}} \left[\phi'_0(\xi)^2 + (3 - 2E - 2\phi_0(\xi)) \phi''_0(\xi) \right] e^{-E}.
\]

2. If $E < 0$ we must take $G_0(E)$ into account. In this case $\Omega(\xi, E) = \beta^2 [3 - 2(E + \phi_0(\xi))\beta] e^{-\beta E}$ and (13) reads
\[
G(\xi, E) = \frac{1}{3!4\sqrt{2\pi}} \left\{ G_0(E) + \left[\beta \phi'_0(\xi)^2 + (3 - 2\beta E - 2\beta\phi_0(\xi)) \phi''_0(\xi) \right] \beta^2 e^{-\beta E} \right\}.
\] (14)
The continuity of f_1 is now imposed to determine $G_0(E)$. As $f_1 = g - \phi_1 \partial_E f_0$, the discontinuity of $g(x,v) = G(\xi,E)$, namely $\Delta G := G(\xi,0^+) - G(\xi,0^-)$ should be equal to $\phi_1 \Delta(\partial_E f_0)$. Since it holds $\Delta(\partial_E f_0) = (\beta - 1)/\sqrt{2\pi}$, we get

\[
\Delta G = \frac{1}{3\sqrt{2\pi}} \left\{ \phi_0'\phi_0'' + (3 - 2\phi_0)\phi_0'' \right\}
- \beta^2 \left[\beta \phi_0' + (3 - 2\beta \phi_0) \phi_0'' \right] - G_0(0) \}.
\] (15)

Then we can find $\phi_1(\xi)$ as $\phi_1(\xi) = \Delta G/\Delta(\partial_E f_0) = \sqrt{2\pi} \Delta G/(\beta - 1)$ with ΔG given by (15). Moreover, as we impose $\phi_1(\pm\infty) = 0$, we know that $G_0(0) = 0$. Hence, we obtain $\phi_1(\xi)$. Figure 1a shows $\phi_1(\xi)$ for $\psi = 0.1$ and Fig. 1b represents the corrected potential. For reference, also the unperturbed potential is drawn. We see that the potential experiences a reduction as a result of quantum correction.

To determine $G_0(E)$ for all negative energies we go back to (9b). As we have already determined
With this ansatz, we have noted that all derivatives of \(\phi_0 \) can by expressed by \(\phi_0 \) itself via \(\phi'_0(\xi) = -\phi_0(\xi) \left(1 - \sqrt{\phi_0(\xi)/\psi} \right)^{1/2} \), \(\phi''_0(\xi) = \phi_0(\xi) \left(1 - 5\sqrt{\phi_0(\xi)/\psi}/4 \right) \) and also \(V''(\phi_0) = - \left(1 - 15\sqrt{\phi_0/\psi}/8 \right) \). Inserting these expressions into (9b) we find an expression for its left hand side as a function of \(\phi_0 \) which we call \(L(\phi_0) \). An explicit form of this function is too long to be included in this letter and will be presented elsewhere.

On the other hand, the right hand side of (9b) can be written as

\[
\int_{-\infty}^{+\infty} dv \, g(x, v) = \sum_{\sigma} \int_{-\phi_0(\xi)}^{\infty} dE \, \frac{G(\xi, E)}{v(\xi, E, \sigma)} = 2 \int_{-\phi_0(\xi)}^{\infty} dE \, \frac{G(\xi, E)}{v(\xi, E, 1)}.
\]

Making use of (13) we can reduce (16) to

\[
\int_{-\infty}^{+\infty} dv \, g(x, v) = R(\phi_0) + \frac{1}{3!2\sqrt{2}\pi} \int_{-\phi_0(\xi)}^{0} dE \, \frac{G_0(\xi)}{v(\xi, E, 1)}.
\]

Where \(R(\phi_0) \) represents a known function that can be obtained analytically.

To perform the remaining integral of (17), we make a half power expansion of \(G_0(\xi) \):

\[
\frac{1}{3!2\sqrt{2}\pi} \int_{-\phi_0(\xi)}^{0} dE \, \frac{G_0(\xi)}{v(\xi, E, 1)} = \sqrt{\phi_0} \sqrt{\frac{\pi}{2}} \sum_{n=1}^{\infty} \frac{\Gamma \left(\frac{1+n}{2} \right)}{\Gamma \left(\frac{n}{2} + \frac{3}{2} \right)} a_{n/2} \phi_0^{n/2}.
\]

With this ansatz, we have

\[
\frac{1}{3!2\sqrt{2}\pi} \int_{-\phi_0(\xi)}^{0} dE \, \frac{G_0(\xi)}{v(\xi, E, 1)} = \sqrt{\phi_0} \sqrt{\frac{\pi}{2}} \sum_{n=1}^{\infty} \frac{\Gamma \left(\frac{1+n}{2} \right)}{\Gamma \left(\frac{n}{2} + \frac{3}{2} \right)} a_{n/2} \phi_0^{n/2}.
\]

And we can finally reduce (9b) to

\[
L(\phi_0) = R(\phi_0) + \sqrt{\phi_0} \sqrt{\frac{\pi}{2}} \sum_{n=1}^{\infty} \frac{\Gamma \left(\frac{1+n}{2} \right)}{\Gamma \left(\frac{n}{2} + \frac{3}{2} \right)} a_{n/2} \phi_0^{n/2}.
\]

Therefore, if we define \(\rho(t) := \frac{1}{t} \left(L(t^2) - R(t^2) \right) \), we can find all \(a_{n/2} \) as

\[
a_{n/2} = \frac{1}{n!} \sqrt{\frac{2}{\pi}} \frac{\Gamma \left(\frac{3}{2} + \frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} \frac{d^n \rho(t)}{dt^n} \bigg|_{t=0}.
\]

With this expression for \(a_{n/2} \) we can sum \(G_0(\xi) \) and then find \(G(\xi, E) \) and \(f_1 \). The correction of the distribution function, \(f_1(x, v) \) is plotted in Fig. while the final, corrected distribution function \(f = f_0 + \varepsilon^2 f_1 \) is represented at fixed \(x \) in Fig.

We clearly recognize a partial filling of the phase space within the separatrix being maximum at the hole center. An interpretation may be given in terms of refraction or tunneling: in the classical solution nearby its separatrix, the region of untrapped electrons is populated stronger than that of trapped electrons. In the quantum domain when tunneling becomes effective this gives rise to a net...
influx of particles resulting in a less dilute distribution of trapped electrons. This interpretation of the collective particle behavior, found analytically, matches well with the numerical findings of Ref. 13, according to which the quantum corrections affect the particle trajectories in the vicinity of the separatrix (see also Ref. 20).

We, therefore, conclude that the overall effect of a quantum correction to a classical e–hole is the tendency of the system to reduce the coherent excitation by both a diminution of the amplitude and a partial filling of the trapped particle region by refraction (tunneling), bringing the system closer to the thermal state.

Open questions are how these semiclassical corrections are modified in case of finite amplitudes $\Psi \gtrsim O(1)$, of finite quantum corrections $\varepsilon \gtrsim O(1)$, of hole propagation $v_0 > 0$, of nonlocality of structures such as periodic wave trains, some of which will be addressed in our forthcoming publication [41].

This work was performed under the auspices of the DAAD (Deutscher Akademischer Austauschdienst) and CRUI (Conferenza dei Rettori delle Universita Italiane) in the framework of the research program “VIGNONI.”

FIG. 3: Corrected distribution function \(f = f_0 + \varepsilon^2 f_1 \) at \(x = 0 \), for \(\psi = 0.01, \varepsilon = 0.1 \). The dashed line represents the original (unperturbed) distribution function.

