Leptogenesis in seesaw models with a twofold-degenerate neutrino Dirac mass matrix

Walter Grimus*
Institut für Theoretische Physik, Universität Wien
Boltzmanngasse 5, A–1090 Wien, Austria

Luís Lavoura**
Universidade Técnica de Lisboa
Centro de Física das Interacções Fundamentais
Instituto Superior Técnico, P–1049-001 Lisboa, Portugal

10 May 2004

Abstract

We study leptogenesis in two seesaw models where maximal atmospheric neutrino mixing and $U_{e3} = 0$ result from symmetries. Salient features of those models are the existence of three Higgs doublets and a twofold degeneracy of the neutrino Dirac mass matrix. We find that in those models both leptogenesis and neutrinoless double beta decay depend on the same unique Majorana phase. Leptogenesis can produce a baryon asymmetry of the universe of the right size provided the mass of the heavy neutrino whose decays generate the lepton asymmetry is in the range $10^{11}–10^{12}$ GeV. Moreover, in these models, leptogenesis precludes an inverted neutrino mass spectrum since it requires the mass of the lightest neutrino to be in the range $10^{-3}–10^{-2}$ eV.

*E-mail: walter.grimus@univie.ac.at
**E-mail: balio@cfif.ist.utl.pt
1 Introduction

Experimental cosmology has witnessed spectacular progress during the last few years. In particular, the WMAP experiment [1] has determined with fantastic precision the baryon asymmetry of the universe, which is given by the ratio of baryon number over the number of photons, experimentally measured to be

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = 6.5^{+0.4}_{-0.3} \times 10^{-10},$$

(1)

where n_B is the (present) baryon density of the universe, $n_{\bar{B}}$ is the anti-baryon density and n_{γ} is the (present) density of photons. This value of η_B is in excellent agreement with the one inferred from big bang nucleosynthesis [2].

Another field which has lately witnessed outstanding experimental progress is neutrino masses and lepton mixing. On the one hand, the first results of the KamLAND experiment [3] have conclusively proved that solar neutrinos oscillate; a global analysis of all solar neutrino results, including the recent SNO measurement [4] and also the KamLAND result, gave a mass-squared difference

$$\Delta m^2_{\odot} \equiv m^2_2 - m^2_1 = 7.1^{+1.2}_{-0.6} \times 10^{-5} \text{eV}^2$$

(2)

and a large but non-maximal mixing angle

$$\theta = 32.5^{+2.4}_{-2.3} \text{degrees},$$

(3)

where the errors reflect 1σ constraints in the two-dimensional $\theta-\Delta m^2_{\odot}$ region. Note that $\tan \theta$ is the ratio, in the decomposition of the electron neutrino ν_e, of the amplitude for the heavier neutrino ν_2 over the amplitude for the lighter neutrino ν_1: $\tan \theta = |U_{e2}/U_{e1}|$. where U is the lepton mixing matrix. On the other hand, the Super-Kamiokande experiment [5] has shown that atmospheric neutrinos oscillate with a mass-squared difference in the 90% CL range

$$1.3 \times 10^{-3} \text{eV}^2 < \Delta m^2_{\text{atm}} \equiv |m^2_3 - m^2_1| < 3.0 \times 10^{-3} \text{eV}^2,$$

(4)

with best-fit value $\Delta m^2_{\text{atm}} = 2.0 \times 10^{-3} \text{eV}^2$, and a (most likely) maximal mixing angle:

$$\sin^2 2\theta_{\text{atm}} \equiv 4 |U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) > 0.90$$

(5)

at 90% CL, the best-fit value being exactly 1. Finally, the CHOOZ experiment [6] and all other neutrino oscillation data yield the upper bound $|U_{e3}|^2 < 0.054$ at 3σ [7]. For recent reviews on neutrino oscillations see [8].

These experimental developments invite a renewed interest of theorists for leptogenesis [9, 10]. This is the possibility that the baryon asymmetry of the universe has been generated through the standard-model sphaleron transmutation of a previously existing lepton asymmetry, which in turn was generated at the decay of the heavy neutrinos involved in the seesaw mechanism [11]. In the standard version of that mechanism one introduces three gauge-singlet right-handed neutrinos ν_R. Let us define

$$\nu'_L \equiv C \bar{\nu}_R^T,$$

(6)
where C is the charge-conjugation matrix. Then, the mass terms for the neutrinos are given by \[12\]

$$
\mathcal{L}_{\nu_{\text{mass}}} = -\bar{\nu}_R M_D \nu_L - \bar{\nu}_L M_D^T \nu_R - \frac{1}{2} \bar{\nu}_R M_R C \bar{\nu}_R^T + \frac{1}{2} \nu_R^T C^{-1} M_R^* \nu_R
$$

(7)

where M_R is a symmetric matrix. If the eigenvalues of $M_R M_R^*$ are all much larger than the eigenvalues of $M_D M_D^*$, then the approximate Majorana mass matrix for the light neutrinos is given by

$$
\mathcal{M}_\nu = -M_D^T M_R^{-1} M_D
$$

(9)

while the Majorana mass matrix for the heavy neutrinos is approximately equal to M_R \[13\]. In the weak basis where the mass matrix M_ℓ of the charged leptons is diagonal, $M_\ell = \text{diag}(m_e, m_\mu, m_\tau)$, one has

$$
U^T \mathcal{M}_\nu U = \text{diag}(m_1, m_2, m_3)
$$

(10)

where $m_{1,2,3}$ are real non-negative and U is once again the lepton mixing matrix.

Since leptogenesis needs CP violation, an intriguing question is whether there is a connection between the CP violation at the seesaw scale and the one at low energies. In the most general case, the answer to this question is negative \[14, 15\]. However, it is easy to find scenarios where such a connection exists—see, for instance, \[16, 17\]; in minimal scenarios only two heavy Majorana neutrinos are required \[18, 19, 20, 21\]. Inspired by grand unified theories, it is also quite common in studies of leptogenesis to assume hierarchies in the neutrino sector—see \[22, 23, 24, 25\] and references therein. In particular, one may assume that the Dirac neutrino mass matrix M_D is strongly hierarchical, i.e. that the eigenvalues $|a|^2$, $|b|^2$, $|c|^2$ of $M_D M_D^*$ satisfy $|a| \ll |b| \ll |c|$, and subsequently reconstruct the masses of the heavy Majorana neutrinos from the low energy data \[22, 23\]. The assumption of a hierarchy in M_D is justified by the relationship, existing in some grand unified theories, between M_D and the up-type-quark mass matrix, and by the fact that the latter matrix is known to be strongly hierarchical.

In this paper we take a different departure and start from the fact that atmospheric neutrino mixing is maximal (or nearly maximal), which suggests an alternative possibility \[26, 27, 28\]. Since experimentally $|U_{\mu 3}| \simeq |U_{\tau 3}|$, there may exist in nature a $\mu-\tau$ interchange symmetry. We know that $m_\mu \neq m_\tau$, hence the $\mu-\tau$ interchange symmetry must be broken in the charged-lepton sector, but it may be kept intact in the neutrino sector. This can be achieved through the introduction of three Higgs doublets, one of them (ϕ_1) with Yukawa couplings to the neutrino singlets and to the charged-lepton singlet e_R, and the other two (ϕ_2 and ϕ_3) with Yukawa couplings only to the charged-lepton singlets μ_R and τ_R. Under the interchange $\mu \leftrightarrow \tau$ the doublet ϕ_2 remains invariant while ϕ_3 changes sign; this leads to $m_\mu \neq m_\tau$. On the other hand, the neutrino Dirac mass matrix is twofold degenerate because ϕ_1 is invariant under $\mu \leftrightarrow \tau$:

$$
M_D = \text{diag}(a, b, b).
$$

(11)
A crucial feature of these models is the existence of some other symmetry—either the continuous lepton-number symmetries [26] or a discrete symmetry [27]—which forces M_D and the charged-lepton mass matrix M_ℓ to be simultaneously diagonal. These other symmetries are allowed to be softly broken, hence the right-handed-neutrino Majorana mass matrix is non-diagonal and has the form

$$M_R = \begin{pmatrix}
m & n & n \\
n & p & q \\
n & q & p
\end{pmatrix}$$

(12)
due to the $\mu-\tau$ interchange symmetry. It is this matrix M_R which produces lepton mixing.

The neutrino sectors of the Z_2 model of [26] and of the D_4 model of [27] are both characterized by equations (11) and (12); the D_4 model is more constrained than the Z_2 model since it has $q = 0$ in M_R. Note that the CP-violating phase analogous to the CKM phase is absent from the models under discussion, because $U_{e3} = 0$. This follows easily from equations (11) and (12), since

$$M_\nu = \begin{pmatrix}
x & y & y \\
y & z & w \\
y & w & z
\end{pmatrix}$$

(13)
in the basis in which M_ℓ is diagonal. Thus the only sources of CP violation in the leptonic sector are the two physical Majorana phases in U.

The purpose of this paper consists in analyzing leptogenesis in the models of [26, 27]. In particular, we will show that they have the following properties:

1. Leptogenesis is a viable scenario.

2. Correctly reproducing η_B constrains the spectra of both the light and the heavy neutrinos.

3. Only one of the two Majorana phases is responsible for leptogenesis, and that phase is also the only one which appears in the effective mass $|\langle m \rangle|$ for neutrinoless $\beta\beta$ decay.

In section 2 we review the computation of η_B from the knowledge of M_D and M_R, with emphasis on the three-Higgs-doublet structure of our models. We proceed in section 3 to derive the relevant analytic formulae for the diagonalization of M_R and M_ν, in order to calculate η_B. We apply those formulæ in section 4 to study the variation of η_B with the parameters of the models. In section 5 we draw our conclusions. An appendix contains calculational details related to section 3.

2 Baryogenesis from leptogenesis

The “natural” basis for our models is given by diagonal matrices M_D and M_ℓ while M_R is non-diagonal—see equations (11) and (12). However, the basis in which the leptogenesis
formalism is established is the one where M_ℓ and the mass matrix of the right-handed neutrino singlets are diagonal; the latter matrix is then

$$\hat{M}_R \equiv \text{diag} (M_1, M_2, M_3),$$

(14)

with real non-negative diagonal elements. Defining a unitary matrix V by

$$V^T M_R V = \hat{M}_R,$$

(15)

we find, using equation (7),

$$M'_D = V^T M_D$$

(16)

for the neutrino Dirac mass matrix in the leptogenesis basis. For the actual calculation of η_B one needs

$$R \equiv M'_D M'_D^\dagger = V^T M_D M_D^\dagger V^*.$$

(17)

We assume, for the masses of the heavy Majorana neutrinos $N_{1,2,3}$, that $M_1 \ll M_{2,3}$. Then, the CP asymmetry ϵ_1 produced in the decay of N_1 (the heavy neutrino with mass M_1) is [10, 29]

$$\epsilon_1 = \frac{1}{8\pi |v_1|^2 R_{11}} \sum_{j=2}^{3} f \left(\frac{M_j^2}{M_1^2} \right) \text{Im} \left[(R_{1j})^2 \right],$$

(18)

where v_1 denotes the vacuum expectation value (VEV) of ϕ_1^0. The function f is given by

$$f(t) = \sqrt{\frac{2 - t}{1 - t}} + (1 + t) \ln \frac{t}{1 + t}.$$

(19)

For $t \gg 1$, we have

$$f(t) = -\frac{3}{2} t^{-1/2} - \frac{5}{6} t^{-3/2} - \frac{13}{12} t^{-5/2} - \frac{19}{20} t^{-7/2} - \ldots.$$

(20)

Thus, $f(t)$ is negative.

The leptonic asymmetry produced through the decay of N_1 is written as [10, 30, 31]

$$Y_L \equiv \frac{n_L - \bar{n}_L}{s} = \frac{\epsilon_1 \kappa_1}{g_{*1}},$$

(21)

where n_L is the lepton density, \bar{n}_L is the anti-lepton density, s is the entropy density, κ_1 is the dilution factor for the CP asymmetry ϵ_1 and g_{*1} is the effective number of degrees of freedom at the temperature $T = M_1$. The effective number of degrees of freedom is given by (see for instance [32])

$$g_* = \sum_{j=\text{boson}} g_j + \frac{7}{8} \sum_{k=\text{fermion}} g_k.$$

(22)

In the $SU(2) \times U(1)$ gauge theory with three Higgs doublets and supplemented by the seesaw mechanism one has

$$g_{*1} = \left[28 + \frac{7}{8} \times 90 \right]_{\text{SM}} + 8 + \frac{7}{8} \times 2 = 116.5,$$

(23)
where the terms within the brackets are the Standard Model contributions and the last two terms in the sum take into account the two additional Higgs doublets and the lightest heavy neutrino N_{1}, respectively.

The baryon asymmetry Y_{B} produced through the sphaleron transmutation of Y_{L}, while the quantum number $B - L$ remains conserved, is given by [33]

$$Y_{B} = \frac{\omega}{\omega - 1} Y_{L} \quad \text{with} \quad \omega = \frac{8N_{F} + 4N_{H}}{22N_{F} + 13N_{H}},$$

(24)

where $N_{F} = 3$ is the number of fermion families and N_{H} is the number of Higgs doublets. This relation derives from the thermal equilibrium of sphalerons for $10^{2} \text{ GeV} \lesssim T \lesssim 10^{12} \text{ GeV}$ [10, 31]. Note that we must impose the condition $M_{1} \lesssim 10^{12} \text{ GeV}$, otherwise Y_{L} could be erased before it transmutes into Y_{B}. From equation (24), $\omega = 12/35$ in three-Higgs-doublet models.

Next we discuss the relation between Y_{B} and η_{B}, where the latter quantity is the ratio baryon-number density over photon density. Note that this is the present ratio, and η_{B} has last changed at the time of $e^{+}e^{-}$ annihilation, at which time the photon density (temperature) has increased relative to the neutrino density (temperature). On the other hand, Y_{B} did not change since its generation—the baryon number per comoving volume and the entropy per comoving volume remain constant. Thus we have

$$\eta_{B} = \frac{s}{n_{\gamma}} \bigg|_{0} Y_{B},$$

(25)

where n_{γ} is the photon density. The index 0 denotes present time. We know that [32]

$$s = \frac{2\pi^{2}}{45} g_{*0} T^{3} \quad \text{and} \quad n_{\gamma} = \frac{2}{\pi^{2}} \zeta(3) T^{3},$$

(26)

where T is the photon temperature and $\zeta(3) \approx 1.20206$, ζ being the zeta function. At present only photons and light neutrinos are relevant for s, since all other particles have annihilated apart from tiny remnants—actually, we are just discussing the baryon remnant. Thus

$$g_{*0} = 2 + \frac{7}{8 \times 6 \times \frac{4}{11}} = \frac{43}{11},$$

(27)

where we have taken into account that the neutrino temperature after $e^{+}e^{-}$ annihilation is a factor of $(4/11)^{1/3}$ lower than the photon temperature T. One thus obtains [20, 34]

$$\left. \frac{s}{n_{\gamma}} \right|_{0} = \frac{\pi^{4}}{120} \frac{43}{11} = 0.338 \quad \text{and} \quad \eta_{B} = 0.338 Y_{B} \simeq -3.15 \times 10^{-2} \kappa_{1} \epsilon_{1}.$$

(28)

We have used the values for three-Higgs-doublet models.

We now turn to the dilution factor, which is approximately given by [30, 35, 36]

$$\kappa_{1} \approx \frac{0.3}{K_{1} \ln K_{1}}^{3/5},$$

(29)

where

$$K_{1} = \frac{\Gamma_{1}}{H_{1}}.$$

(30)
In this equation, Γ_1 is the decay width of N_1, given at tree level by

$$\Gamma_1 = \frac{R_{11} M_1}{8\pi |v_1|^2},$$ \hfill (31)

and H_1 is the Hubble constant at temperature $T = M_1$,

$$H_1 = 1.66 \sqrt{g_{*1}} \frac{M_1^2}{M_{\text{Planck}}},$$ \hfill (32)

where $M_{\text{Planck}} = 1.221 \times 10^{19} \text{GeV}$. Thus,

$$K_1 = \frac{M_{\text{Planck}} R_{11}}{1.66 \sqrt{g_{*1}} 8\pi |v_1|^2 M_1}.$$ \hfill (33)

Equation (29) holds for $10 \lesssim K_1 \lesssim 10^6$, (30) 35 36. Numerically one obtains

$$K_1 \simeq \frac{895.6}{1 \text{eV}} \frac{R_{11}}{M_1} \left(\frac{174 \text{GeV}}{|v_1|} \right)^2.$$ \hfill (34)

For g_{*1} we have used the value of equation (23).

With equations (18), (28), (29) and (33) one obtains, after a numerical evaluation,

$$\eta_B \simeq -1.39 \times 10^{-9} \frac{1}{(\ln |K_1|)^{3/5}} \sum_{j=2}^{3} f \left(\frac{M_j^2}{M_1^2} \right) \frac{\text{Im} \left[(R_{1j})^2 \right]}{(R_{11})^2} \frac{M_1}{10^{11} \text{GeV}}.$$ \hfill (35)

This equation, which we shall use in conjunction with equation (34), clearly indicates the desired order of magnitude of M_1. Equation (35) shows that η_B is approximately independent of $|v_1|$. Only the logarithm of K_1 in the denominator makes η_B dependent on $|v_1|$. Also notice that the minus sign in equation (35) cancels with the negative sign of $f(t)$.

3 The baryon asymmetry in our models

It remains to calculate the quantities $\text{Im} \left[(R_{1j})^2 \right]$ ($j = 2, 3$) and R_{11} in our models. We will see that the Z_2 model allows a full analytical calculation of these quantities and, according to the discussion at the end of section 1 these quantities in the D_4 model are special cases of those in the Z_2 model.

We remind the reader that, in our models, the effective light-neutrino Majorana mass matrix M_ν is as in equation (13), while the right-handed-neutrino Majorana mass matrix M_R has the same form as M_ν and is in equation (12). The matrix M_ν is diagonalized by U, see equation (10), while M_R is diagonalized by V, see equations (14) and (15). The analogies between M_ν and M_R and between U and V are used repeatedly throughout this paper.
It can be shown that, because \(\mathcal{M}_\nu \) is of the specific form in equation (13), i.e. with \((\mathcal{M}_\nu)_{\mu\mu} = (\mathcal{M}_\nu)_{\tau\tau} \) and \((\mathcal{M}_\nu)_{\mu\tau} = (\mathcal{M}_\nu)_{\tau\mu} \), the matrix \(U \) can be parametrized as

\[
U = \text{diag}\left(1, e^{i\alpha}, e^{i\beta}\right) \begin{pmatrix}
-c & s & 0 \\
\frac{c}{\sqrt{2}} & \frac{s}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{c}{\sqrt{2}} & \frac{s}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix} \text{diag}\left(e^{i\beta_1}, e^{i\beta_2}, e^{i\beta_3}\right),
\]

with \(c \equiv \cos \theta \) and \(s \equiv \sin \theta \). We assume, without loss of generality, that \(\theta \) belongs to the first quadrant while \(m_2 > m_1 \). The phase \(\alpha \) is unphysical, the only physical phases are the differences

\[
\Delta \equiv 2(\beta_1 - \beta_2)
\]

and \(2(\beta_1 - \beta_3) \). The matrix \(\mathcal{M}_\nu \) has six physical parameters: the moduli of \(x, y, z \) and \(w \) and the phases of \(zw^* \) and \(y^2z^*x^*z^* \). It is better to use as physical parameters the moduli of \(z + w \) and \(z - w \) instead of the moduli of \(z \) and \(w \), and the phases of \((z - w)(z + w)^* \) and \(y^2z^*x^*z^* \). The six parameters \(|x|, |y|, |z + w|, |z - w|, \arg[y^2z^*x^*z^*] \) and \(\arg[(z - w)(z + w)^*] \) correspond to the six observables \(m_1, m_2, m_3, \theta, \Delta \) and \(2(\beta_1 - \beta_3) \).

Since the matrices \(M_R \) and \(\mathcal{M}_\nu \) have the same form, the matrix \(V \) which diagonalizes \(M_R \) has the same form as the matrix \(U \) which diagonalizes \(\mathcal{M}_\nu \):

\[
V = \text{diag}\left(1, e^{i\gamma_1}, e^{i\gamma_3}\right) \begin{pmatrix}
-c' & s' & 0 \\
\frac{s'}{\sqrt{2}} & \frac{c'}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{s'}{\sqrt{2}} & \frac{c'}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix} \text{diag}\left(e^{i\gamma_1}, e^{i\gamma_2}, e^{i\gamma_3}\right),
\]

with \(c' \equiv \cos \theta' \) and \(s' \equiv \sin \theta' \). We assume, without loss of generality, that \(\theta' \) belongs to the first quadrant while \(M_2 > M_1 \). Like in the previous paragraph, there are six observables originating in \(M_R \): \(M_1, M_2, M_3, \theta', 2(\gamma_1 - \gamma_2) \) and \(2(\gamma_1 - \gamma_3) \).

We proceed to the calculation of \(R \)—see equation (17). Using equations (11) and (38), we obtain

\[
R = V^T M_D M_D^T V^* = \begin{pmatrix}
|a|^2 c'^2 + |b|^2 s^2 & c's' \left(||b|^2 - |a|^2\right) e^{i(\gamma_1 - \gamma_2)} & \left(|b|^2 - |a|^2\right) e^{i(\gamma_1 - \gamma_2)} & 0 \\
0 & |b|^2 c'^2 & |a|^2 s^2 + |b|^2 c'^2 & 0 \\
0 & 0 & 0 & |b|^2
\end{pmatrix}.
\]

The fact that

\[
R_{13} = R_{23} = 0
\]

implies that in this model the third heavy neutrino has no bearing on leptogenesis—even if its mass \(M_3 \) happens to be lower than \(M_1 \) and \(M_2 \), the masses of the other two heavy neutrinos.

The matrices \(\mathcal{M}_\nu \) and \(M_R \) are related through equation (13), with \(M_D \) given by equation (14). That relation contains only two extra parameters: \(|a| \) and \(|b| \). This means that,

\begin{enumerate}
\item Equation (36) is clearly not the most general parametrization for a unitary matrix, rather it is a consequence of the specific form of \(\mathcal{M}_\nu \) in equation (13).
\item The physical phases in \(\mathcal{M}_\nu \) are the ones of its Jarlskog invariants. For instance, \(\arg(zw^*) \) is the phase of \((\mathcal{M}_\nu)_{\mu\mu} (\mathcal{M}_\nu)_{\tau\tau} (\mathcal{M}_\nu)^*_{\mu\tau} (\mathcal{M}_\nu)^*_{\tau\mu} \), and \(\arg(y^2z^*x^*) \) is the phase of \((\mathcal{M}_\nu)_{ee} (\mathcal{M}_\nu)^*_{ee} (\mathcal{M}_\nu)^*_{ee} \).
\end{enumerate}
out of the six observables originating in M_R, only two can be considered as independent of the six observables originating in M_ν. We shall select $M_{1,2}$, together with the observables originating in M_ν, as the basic observables of the theory, and express the four remaining ones in terms of these. It will turn out that $2(\beta_1 - \beta_3)$ and m_3 play no role in the computation of η_B; the basic observables that we need for that computation are

$$m_{1,2}, \; M_{1,2}, \; \theta \; \text{and} \; \Delta.$$ (41)

With the aim of using the experimental information on Δm^2_{\odot} and Δm^2_{atm}, we express

$$m_2 = \sqrt{m_1^2 + \Delta m^2_{\odot}} \quad \text{and} \quad m_3 = \sqrt{m_1^2 + \sigma \Delta m^2_{\text{atm}}} \quad (\sigma = \pm 1)$$ (42)

as functions of m_1. For m_3 there is a twofold ambiguity stemming from the two possible neutrino spectra: normal spectrum $m_1 < m_2 < m_3$ ($\sigma = +1$) and inverted spectrum $m_3 < m_1 < m_2$ ($\sigma = -1$). The inverted spectrum is only allowed for $m_1 \geq \sqrt{\Delta m^2_{\text{atm}}}$; the experimental result for the atmospheric mass-squared difference—see equation (4)—then requires $m_1 \gtrsim 0.04$ eV, which is rather large.

As shown in the Appendix, the parameters $|x|$, $|y|$ and $|z + w|$ are given in terms of the observables in equation (41) by

$$|x| = \left| c^2 m_1 + s^2 m_2 e^{i \Delta} \right|,$$ (43)

$$|y| = \frac{c s}{\sqrt{2}} \left| m_1 - m_2 e^{i \Delta} \right|,$$ (44)

$$|z + w| = \left| s^2 m_1 + c^2 m_2 e^{i \Delta} \right|.$$ (45)

We may then compute

$$B = 4m_1 m_2 M_1 M_2 |y|^2 - m_1^2 m_2^2 \left(M_1^2 + M_2^2 \right),$$ (46)

$$C = m_1^2 m_2^2 M_1^2 M_2^2 |x|^2 |z + w|^2.$$ (47)

These are the coefficients of the equation

$$|x|^4 |b|^8 + B |x|^2 |b|^4 + C = 0,$$ (48)

which is derived in the Appendix and allows one to compute the parameter $|b|$ as a function of the observables in equation (41). Indeed,

$$|b|^4 = \frac{-B \pm \sqrt{B^2 - 4C}}{2 |x|^2}.$$ (49)

Moreover, the parameter $|a|$ is given by—see equation (A32)

$$|a|^4 = \frac{-B \mp \sqrt{B^2 - 4C}}{2 |z + w|^2},$$ (50)

and the mixing angle θ' is given, as a function of the observables in equation (41), by—see equation (A34)

$$c^2 - s^2 = \frac{\pm \sqrt{B^2 - 4C}}{m_1^2 m_2^2 (M_2^2 - M_1^2)}.$$ (51)
Thus, using $m_{1,2}$, $M_{1,2}$, θ and Δ as input, we are able to compute, with a twofold ambiguity, $|b|$, $|a|$ and θ'. The twofold ambiguity corresponds to the interchanges $|m| \leftrightarrow |p + q|$ and $c^2 \leftrightarrow s^2$, as is made clear in the Appendix.

One must check that the condition $B^2 - 4C \geq 0$ is respected. This condition leads to a lower bound on m_1; in the limit $M_2 \gg M_1$ one finds approximately

$$\frac{m_1}{m_2} \gtrsim \frac{M_1}{M_2} \sin^2 2\theta \quad \text{or} \quad m_1 \gtrsim \sqrt{\Delta m^2_{\odot}} \frac{M_1}{M_2} \sin^2 2\theta. \quad (52)$$

On the other hand, it turns out that, in general, with m_2 given by the first equation (49), $|a|^2$ and $|b|^2$ increase with increasing m_1. In our models, a and b arise from the Yukawa Lagrangian

$$\mathcal{L}_Y = \frac{(-\phi^0, \phi^+)}{v_1} \left\{ a \bar{\nu}_e R \left(\frac{\nu_e L}{\mu L} \right) + b \left[\bar{\nu}_\mu R \left(\frac{\nu_\mu L}{\mu L} \right) + \bar{\nu}_\tau R \left(\frac{\nu_\tau L}{\tau L} \right) \right] \right\} + \text{h.c.} - \cdots, \quad (53)$$

where \cdots represents the Yukawa couplings of the right-handed charged-lepton fields. If we require that the Yukawa coupling constants a/v_1 and b/v_1 should at most be of order 1, this implies a loose upper bound on m_1 (when $m_2^2 - m_1^2$ is kept fixed), since $|a|$ and $|b|$ increase with m_1. For $M_2 \gg M_1$ and using the solution $|b|^2 > |a|^2$, i.e. the upper signs in equations (49) and (50), we find the approximate expressions

$$|a|^2 \simeq m_1 M_1 \left[1 - \sin^2 (\Delta/2) \sin^2 2\theta \right]^{1/2}, \quad (54)$$

$$|b|^2 \simeq m_1 M_2 \left[1 - \sin^2 (\Delta/2) \sin^2 2\theta \right]^{-1/2}, \quad (55)$$

where we have used $m_2 \simeq m_1$, valid for $m_1 \gg \sqrt{\Delta m^2_{\odot}}$. These equations may be used to compute the approximate upper bound on m_1. We see that $|b|^2 \sim m_1 M_2$. Therefore, requiring $|b|^2/|v_1|^2 \lesssim 1$ leads to

$$m_1 \lesssim \frac{|v_1|^2}{M_2}. \quad (56)$$

For instance, for $|v_1| = 10$ GeV and $M_2 = 10^{13}$ GeV, equation (56) yields $m_1 \lesssim 0.01$ eV. If we choose $|v_1| = 50$ GeV and $M_2 = 2.5 \times 10^{12}$ GeV, we have $m_1 \lesssim 1$ eV.

An expression for $\text{Im} \left((R_{12})^2 \right)$ in terms of our basic observables is derived in the Appendix, see equation (A27). Using equation (53), the main result of this section is

$$\eta_B \simeq -1.39 \times 10^{-9} \frac{1}{(\ln K_1)^{3/5}} f \left(\frac{M_2^2}{M_1^2} \right) (|b|^2 - |a|^2)^2 \frac{M_1^2 M_2 (m_2^2 - m_1^2) c^2 s^2 \sin \Delta}{m_1 m_2 (M_2^2 - M_1^2) (R_{11})^2 (10^{11} \text{GeV})^2}. \quad (57)$$

Here, a convenient expression for R_{11}—see equation (59)—is

$$R_{11} = \frac{1}{2} \left[|a|^2 + |b|^2 + (|a|^2 - |b|^2) (c^2 - s^2) \right], \quad (58)$$

where $c^2 - s^2$ is given by equation (51).
Since \(f (M_2^2 / M_1^2) \) is negative, we find from equation (57) that \(\sin \Delta > 0 \). Notice the important point that the violation of \(CP \) responsible for the generation of a non-zero \(\eta_B \) all comes from the Majorana phase \(\Delta \). This is the same Majorana phase entering the matrix element for neutrinoless double beta decay,

\[
|\langle m \rangle| = |(\mathcal{M}_\nu)_{ee}| = |x|, \tag{59}
\]

which is given by equation (43). Thus, in these models neutrinoless double beta decay and leptogenesis depend on the same Majorana phase \(\Delta \).

To conclude this section, we discuss the extra condition on \(M_R \) in the \(D_4 \) model of [27]. As mentioned before, in that model \((M_R)_{\mu\tau} = q = 0 \). Since \(M_D \) is diagonal, this leads to

\[
2(M_{\nu1})_{\mu\tau} = 0, \tag{60}
\]

The Majorana phase \(2(\beta_1 - \beta_3) \) is irrelevant for our purposes, therefore the important constraint is

\[
\frac{1}{m_3} = \left| \frac{s^2}{m_1} e^{i\Delta} + \frac{c^2}{m_2} \right|. \tag{61}
\]

This forces \(m_3 \) to be larger than both \(m_1 \) and \(m_2 \) (normal spectrum). The Majorana phase \(\Delta \) becomes a function of \(m_1 \) through

\[
\cos \Delta = \frac{(m_1 m_2 / m_3)^2 - c^4 m_1^2 - s^4 m_2^2}{2c^2 s^2 m_1 m_2}, \tag{62}
\]

and through equations (42) with \(\sigma = +1 \). Thus, the \(D_4 \) model of [27] has one degree of freedom less than the \(\mathbb{Z}_2 \) model of [26].

4 Numerical results

In this section we shall always use

\[
\theta = 33^\circ, \tag{63}
\]

\[
\Delta m_{\odot}^2 = 7.1 \times 10^{-5} \text{eV}^2, \tag{64}
\]

the best-fit values of [4]. Then the observables in our set (11) which are still free to be chosen are \(m_1, M_{1,2} \) and \(\Delta \); we furthermore have to choose \(|v_1| \)—see equations (54) and (57). The mass \(m_2 \) is fixed via equations (42) and (57).

From this input one obtains \(|x|, |y| \) and \(|z + w| \) using equations (43)–(45). One then computes \(|a|, |b| \) and \(\theta' \), with a twofold ambiguity, from equations (49)–(51). Thereafter, \(R_{11} \) is found in equation (58) and \(K_1 \) is given by equation (54).

As for the twofold ambiguity in the computation of \(|a| \) and \(|b| \), we use the upper signs in equations (49)–(51). Numerically, the choice of the lower signs yields a smaller \(\eta_B \).

The VEV \(|v_1| \) must be smaller than 174 GeV, in order that there is also room for the other two VEVs: \(\sum_{j=1}^3 |v_j|^2 = (174 \text{GeV})^2 \). Since in the models of [26] [27] both the
neutrino masses and the electron mass originate in Yukawa couplings to ϕ_1, while the μ and τ masses originate in Yukawa couplings to ϕ_2 and ϕ_3, the smallness of the electron and neutrino masses suggests that v_1 should be relatively small.

In figure 1 we have plotted η_B versus m_1 for three different values of M_1. We read off from that figure that M_1 must be larger than 10^{11} GeV in order to reproduce the experimental value of η_B in equation (1). Since a successful leptogenesis requires $M_1 < 10^{12}$ GeV [10, 31], the order of magnitude of M_1 becomes quite constrained. We furthermore see that small values of m_1 are preferred; for large values of m_1, η_B becomes too small. Actually from figure 1 we gather that m_1 cannot exceed 0.02 eV. This rules out the inverted neutrino spectrum if we want to accommodate leptogenesis in our model. As a function of m_1, the maximum of the theoretical expression (57) for η_B is roughly at $m_1 = 3 \times 10^{-3}$ eV. If we consider η_B as a function of the CP-violating Majorana phase Δ, a numerical study shows that the maximum of η_B is attained for Δ close to 100°. As a function of $|v_1|$, η_B increases by less than a factor of two when that VEV goes from 10 GeV to 100 GeV.

In order to understand the dependence of η_B of equation (57) on $M_{1,2}$, it is useful to perform a scale transformation $M_{1,2} \rightarrow \lambda M_{1,2}$ where λ is an arbitrary positive number.

Figure 1: η_B as function of m_1 for three different values of M_1. In producing this figure we have chosen $M_2/M_1 = 10$, $|v_1| = 50$ GeV and $\Delta = 90°$. The lowest allowed m_1 for this value $M_2/M_1 = 10$ is $m_1 = 0.71 \times 10^{-3}$ eV. The horizontal lines indicate the experimental result for η_B, as given in equation (1).
Figure 2: η_B as a function of m_1 for $M_1 = 2.5 \times 10^{11}$ GeV and three different values of M_2. We have used $|v_1| = 50$ GeV and $\Delta = 90^\circ$.

From equations (49) and (50) we see that $|a|^2$ and $|b|^2$ scale with one power of λ; the same holds for R_{12} and R_{11}. It follows that η_B also scales with one power of λ; in other words, η_B is a homogeneous function of order one in $M_{1,2}$.

In figure 2 we have plotted η_B versus m_1 for $M_1 = 2.5 \times 10^{11}$ GeV and different values of M_2. This figure shows that fixing M_1 and varying M_2 with $M_2 \gg M_1$ does not drastically alter η_B, except for very small values of m_1. The lower bound on m_1 as a function of the ratio M_2/M_1 is also illustrated in figure 2.

5 Conclusions

In this paper we have computed the baryon asymmetry of the universe in the Z_2 model of [26] and in the D_4 model of [27]. These models are characterized by a neutrino Dirac mass matrix M_D with two degenerate eigenvalues, and by an interchange (Z_2) symmetry between the μ and τ families. Both models predict maximal atmospheric neutrino mixing and $U_{e3} = 0$ as a consequence of their symmetries.

We have shown that these models can easily accommodate baryogenesis via leptoge-
Figure 3: The effective Majorana mass in neutrinoless $\beta\beta$ decay as a function of m_1. Starting at the upper curve and descending to the lowest of the four curves, the values used for Δ are 0°, 90°, 135° and 180°, respectively.

We see that, if our models are to have successful leptogenesis, then $|\langle m \rangle|$ is at most 0.01 eV; if the evidence for neutrinoless $\beta\beta$ decay of [37], with $|\langle m \rangle| > 0.1$ eV is confirmed, then leptogenesis is not enough to generate an η_B of the observed size.

We stress that the neutrino mass matrices of our models allow an analytical calculation of the CP asymmetry ϵ_1 of equation (18). The results of this paper for the \mathbb{Z}_2 and D_4 models may be valid in a wider context of general models with a twofold degenerate Dirac mass matrix M_D; the reason is that the mass matrix of the light neutrinos must have the form in equation (13) if one assumes maximal atmospheric neutrino mixing and $U_{e3} = 0$.

3On the other hand, as shown in [23], a mass hierarchy in M_D requires finetuning of the masses in the heavy neutrino sector in order to reproduce η_B.
assumptions that, as experiment shows, cannot be far from true.

Acknowledgements: We are grateful to Ricardo González Felipe for helpful discussions. The work of L.L. was supported by the Portuguese *FundaÇÃO para a Ciência e a Tecnologia* under the contract CFIF-Plurianual.
A Algebraic details

The matrices M_R and M_ν Those matrices are given in equations (12) and (13), and their relationship to each other is expressed by equations (9) and (11). We define

$$d \equiv 2n^2 - m(p + q),$$ \hspace{1cm} (A1)

$$f \equiv 2y^2 - x(z + w),$$ \hspace{1cm} (A2)

so that

$$\det M_R = (q - p) d \quad \text{and} \quad \det M_\nu = (w - z) f.$$ \hspace{1cm} (A3)

Then, by explicitly inverting M_R and by using equation (9), we find

$$x = a^2 \frac{p + q}{d},$$ \hspace{1cm} (A4)

$$y = ab \frac{-n}{d},$$ \hspace{1cm} (A5)

$$z + w = b^2 \frac{m}{d}$$ \hspace{1cm} (A6)

and

$$(z - w)(q - p) = b^2.$$ \hspace{1cm} (A7)

It is also useful to invert equation (9):

$$M_R = -M_D M_\nu^{-1} M_D^T.$$ \hspace{1cm} (A8)

From this relation we compute

$$m = a^2 \frac{z + w}{f},$$ \hspace{1cm} (A9)

$$n = ab \frac{-y}{f},$$ \hspace{1cm} (A10)

$$p + q = b^2 \frac{x}{f}.$$ \hspace{1cm} (A11)

In addition, we obtain equation (A7) again.

The parameters x, y, z and w From equations (10), (13) and (36) one may write

$$\begin{pmatrix} x & ye^{ia} & ye^{ia} \\ ye^{ia} & ze^{2ia} & we^{2ia} \\ ye^{ia} & we^{2ia} & ze^{2ia} \end{pmatrix} = \begin{pmatrix} -c & s & 0 \\ s/\sqrt{2} & c/\sqrt{2} & 1/\sqrt{2} \\ s/\sqrt{2} & c/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \hat{\mu} \begin{pmatrix} -c & s/\sqrt{2} & s/\sqrt{2} \\ s & c/\sqrt{2} & c/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix},$$ \hspace{1cm} (A12)

where

$$\hat{\mu} = \text{diag}(m_1 e^{-2i\beta_1}, m_2 e^{-2i\beta_2}, m_3 e^{-2i\beta_3}).$$ \hspace{1cm} (A13)
Using the analogy between the matrices M and R, especially equations (A3), (A15) and (A17) lead to

$$y^2 x^*(z + w)^* = \frac{c^2 s^2}{2} \left(m_1 - m_2 e^{i\Delta} \right)^2 \left(c^2 m_1 + s^2 m_2 e^{-i\Delta} \right) \left(s^2 m_1 + c^2 m_2 e^{-i\Delta} \right), \quad (A14)$$

$$|z - w| = m_3, \quad (A15)$$

$$(z - w) (z + w)^* = m_3 \left[s^2 m_1 e^{2i(\beta_1 - \beta_3)} + c^2 m_2 e^{2i(\beta_2 - \beta_3)} \right]. \quad (A16)$$

In analogy to equation (A15) we also have, for M_R instead of M_{ν},

$$|p - q| = M_3. \quad (A17)$$

The parameters a and b We now express $|a|$ and $|b|$ as functions of the neutrino masses. Using equations (A7), (A15) and (A17) we obtain

$$|b|^2 = m_3 M_3. \quad (A18)$$

Comparing $\det M_{\nu}$ with $\det M_R$ we readily find that $|a|^2 |b|^4 = m_1 m_2 m_3 M_1 M_2 M_3$. Therefore, with equation (A18) we conclude that

$$|a|^2 = \frac{m_1 m_2 M_1 M_2}{m_3 M_3}. \quad (A19)$$

Moreover, equations (A3), (A15) and (A17) lead to

$$|d| = M_1 M_2, \quad (A20)$$

$$|f| = m_1 m_2. \quad (A21)$$

The imaginary part of $(R_{12})^2$ From equation (A14) one derives

$$2 \text{Im} \left[y^2 x^*(z + w)^* \right] = c^2 s^2 m_1 m_2 \left(m_2^2 - m_1^2 \right) \sin \Delta. \quad (A22)$$

Using the analogy between the matrices M_{ν} and M_R, and between U and V, one sees that

$$2 \text{Im} \left[n^2 m^*(p + q)^* \right] = c^2 s^2 M_1 M_2 \left(M_2^2 - M_1^2 \right) \sin (2\gamma_1 - 2\gamma_2). \quad (A23)$$

The matrix R is given in equation (36). Using equation (A23) one sees that

$$\text{Im} \left[(R_{12})^2 \right] = \left(|b|^2 - |a|^2 \right)^2 \frac{2 \text{Im} \left[n^2 m^*(p + q)^* \right]}{M_1 M_2 (M_2^2 - M_1^2)}. \quad (A24)$$

Now, from equations (A1) to (A6) one finds the relation

$$y^2 x^*(z + w)^* = |a|^4 |b|^4 \frac{n^2 m^*(p + q)^*}{|d|^4}. \quad (A25)$$

Therefore, equations (A22) and (A24) give

$$\text{Im} \left[(R_{12})^2 \right] = \left(|b|^2 - |a|^2 \right)^2 \frac{m_1 m_2 (m_2^2 - m_1^2)}{M_1 M_2 (M_2^2 - M_1^2)} \frac{|d|^4}{|a|^4 |b|^4} c^2 s^2 \sin \Delta \quad (A26)$$

$$= \left(|b|^2 - |a|^2 \right)^2 \frac{M_1 M_2 (m_2^2 - m_1^2)}{m_1 m_2 (M_2^2 - M_1^2)} c^2 s^2 \sin \Delta, \quad (A27)$$

where we have used equations (A18)–(A20) in order to go from equation (A26) to equation (A27).
The quadratic equation giving \(|a|\) and \(|b|\) Equations (A18) and (A19) contain \(m_3\) and \(M_3\). We shall now derive expressions for \(|a|\) and \(|b|\) which are functions solely of the observables in equation (41). With equations (43)–(45) it is easy to check that
\[
m_1^2 + m_2^2 = |x|^2 + 4|y|^2 + |z + w|^2. \tag{A28}
\]
For \(M_R\) instead of \(M_\nu\), the analogous relation is
\[
M_1^2 + M_2^2 = |m|^2 + 4|n|^2 + |p + q|^2. \tag{A29}
\]
Using equations (A9)–(A11) and (A21), we find
\[
m_1^2m_2^2(M_1^2 + M_2^2) = |a|^4|z + w|^2 + 4|a|^2|b|^2|y|^2 + |b|^4|x|^2. \tag{A30}
\]
Multiplying this equation by \(|x|^2|b|^4\) and using \(|a|^2|b|^2 = m_1m_2M_1M_2\) we finally obtain equations (46)–(48). The solutions to equation (48) are
\[
m_1^2m_2^2|p + q|^2 = |x|^2|b|^4 = \frac{-B \pm \sqrt{B^2 - 4C^2}}{2}, \tag{A31}
\]
where we have used equations (A11) and (A21). Since \(C = \left(|b|^4|x|^2\right)\left(|a|^4|z + w|^2\right)\), cf. equation (47), we also see that, together with equation (A31),
\[
m_1^2m_2^2|m|^2 = |z + w|^2|a|^4 = \frac{-B \mp \sqrt{B^2 - 4C^2}}{2}. \tag{A32}
\]
In order to determine \(\theta'\) one notes, from equations (43) and (45), that
\[
|z + w|^2 - |x|^2 = \left(c^2 - s^2\right)\left(m_2^2 - m_1^2\right). \tag{A33}
\]
The analogous relation for \(M_R\) is
\[
c^2 - s^2 = \frac{|p + q|^2 - |m|^2}{M_2^2 - M_1^2} = \pm \frac{\sqrt{B^2 - 4C}}{m_1^2m_2^2(M_2^2 - M_1^2)}. \tag{A34}
\]
References

al (New York: Plenum)
Gell-Mann M, Ramond P and Slansky R 1979 Complex spinors and unified theories
Supergravity, Proc. of the Workshop (Stony Brook, NY, 1979) ed P van Nieuwenhuizen and D Z Freedman (Amsterdam: North Holland)
Mohapatra R N and Senjanović G 1980 Neutrino mass and spontaneous parity violation *Phys. Rev. Lett.* **44** 912

See also Bilenky S M, Hošek J and Petcov S T 1980 On oscillations of neutrinos with Dirac and Majorana masses *Phys. Lett.* **94B** 495

