EVIDENCE AGAINST THE EXISTENCE OF A LOW MASS SCALAR BOSON
FROM NEUTRON-NUCLEUS SCATTERING

R. Barbieri and T.E.O. Ericson
CERN - Geneva

ABSTRACT

The existence of a weakly-coupled scalar boson, recently proposed to explain the apparent discrepancy in X rays from muonic atoms is shown to be inconsistent with the angular distribution measurements in low energy neutron-nucleus scattering. Other negative evidence from various different physical situations is also briefly reviewed.

Ref.TH.2011-CERN
23 April 1975
It has been pointed out by several authors\(^1\) that the persistent discrepancies between theory and experiment in the studies of the transition energies between large orbits in high Z muonic atoms can be removed by assuming an interaction between the muon and the nucleons mediated by a scalar (isoscalar) boson \(\phi\) of very low mass (at most a few MeV). Such a particle, of undetermined mass \(\mu\), is indeed called for in unified gauge theories of the weak and electromagnetic interactions (the Higgs particle). More than that, for example in the prototype Weinberg-Salam theory\(^2\), the predicted coupling for this \(\phi\) boson is consistent with the one required to remove the muonic X-ray discrepancies if \(\mu \lesssim 20\) MeV\(^3\).

For this reason it is of great importance to investigate what limitations can be put on the couplings and on the mass of such a boson by other experiments and to enquire what other phenomena would follow from its existence.

Based on these considerations, Resnik, Sundaresan and Watson\(^4\) have suggested looking, via the \(\phi \rightarrow e^+e^-\) decay mode, for \(\phi\) mesons emitted in \(0^+ \rightarrow 0^+\) nuclear transitions. Results of such an experiment have been recently reported by Kohler, Watson and Becker\(^5\), who have used the transitions between the excited \(^1^6\)O (6.05 MeV) and \(^4\)He (20.2 MeV) \(0^+\) levels and the corresponding \(0^+\) ground states. Since no signal has been found, compared to what would be expected from estimates\(^6\) of the \(\phi\)-production branching ratio and the \(\phi\) lifetime, this seems to rule out the existence of a light scalar boson. In principle, from this experiment the upper limit on the \(\phi\) mass \(\mu < 1.022\) MeV can be put, where the \(e^+e^-\) decay mode starts being energetically allowed.

The purpose of the present paper is to demonstrate that low-energy neutron-nucleus scattering provides completely independent evidence against a meson of mass \(\mu < 13\) MeV and that this evidence is overwhelming for \(\mu < 5\) MeV\(^7\).

The idea is simply to look into the angular dependence effects caused on the neutron-nucleus differential cross-section by a \(\phi\)-exchange interaction described by a neutron-nucleus potential of the form

\[
\delta V_{\text{nN}} = -\frac{\mathbf{g}_\phi}{4\pi} A \frac{e^{-\mu r}}{r},
\]

where \(\mathbf{g}_\phi\) is the \(\phi\)-nucleon coupling constant and \(A\) the atomic number of the nucleus. Very prominent effects are indeed expected for \(\mu \rightarrow 0\), since this potential simulates a Coulomb interaction, which, on the other hand, is not present between the neutron and the nucleus.

High-precision neutron-scattering experiments on heavy nuclei have been performed in the keV region mainly to determine the neutron electric polarizability. The following result\(^8\) has been obtained in a n-Pb scattering experiment with a

\(a\) By comparison with the gravitational coupling, a very approximate lower limit \(\mu > 10^{-8}\) eV can be put on the \(\phi\) mass\(^9\).
neutron of kinetic energy E between 1 and 26 keV: parametrizing the differential cross-section in the form

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_0}{4\pi} \left[1 + \omega E \cos \theta \right]$$

it is found that $\omega = (1.91 \pm 0.42) \times 10^{-3}$ keV$^{-1}$.

On the other hand the potential of Eq. (1), treated in the Born approximation, would produce the following modification of the scattering amplitude

$$\Delta f = 2m_n \frac{e_n^2}{4\pi} \frac{1}{4m_n E (1 - \cos \theta) + \mu^2}.$$

Such an amplitude, interfering with the strong interaction amplitude, will show up in the following contribution to ω for $E \to 0$:

$$\Delta \omega = -16 \frac{m_n^2}{v^2} \frac{e_n^2}{4\pi} \frac{A}{\mu^2} / \sqrt{4\pi}.$$

The minus sign in this expression means that the real part of the nuclear scattering amplitude in the case considered is negative. Of course ω receives a contribution ω_s also from the strong interaction amplitude, and eventual cancellations can occur between ω_s and $\Delta \omega$. It seems nevertheless reasonable to assume that $\Delta \omega$, if at all present, cannot be bigger than the measured value of ω unless $|\Delta \omega| < 2 \times 10^{-3}$ keV$^{-1}$, otherwise accurate cancellations must be invoked, since $\Delta \omega$ has opposite sign with respect to the one measured for ω. Having $\sqrt{\sigma/4\pi} = 10$ fm and $A = 208$, we therefore end up with the following limit:

$$\frac{e_n^2}{4\pi} \frac{1}{(\mu \text{ MeV})^2} \leq 3.4 \times 10^{-11}.$$ (2)

Note the dependence of the left-hand side on the inverse fourth power of μ, which makes the bound very sensitive to the low-mass region. In order to put a limit on the mass μ, we now need an estimate for the ϕ-nucleon coupling constant. For this purpose we can use the information coming from the muonic X-ray experiments.

In this situation a very light ϕ boson ($\mu \lesssim 5$ MeV) affects essentially only the coupling of the Coulomb interaction between the muon and the nucleus:

$$- \frac{Z\alpha}{r} + \left(-Z\alpha + \frac{g_\mu e_n}{4\pi} A \right) \frac{1}{r}$$ (3)

where g_μ denotes the ϕ-muon coupling constant and Z the charge of the nucleus. Fitting Eq. (3) to the μ-mesic X-ray data gives therefore a value for the coupling 6)

(*) Since in the actual experiment $E \geq 1$ keV, this bound, as well as the expression for $\Delta \omega$, applies only for $\mu > \sqrt{m_n E} \sim 1$ MeV. However, for $\mu \lesssim 1$ MeV and for the considered values of $g_n^2/4\pi$ [see below Eq. (6)], the full angular dependence of Δf violently disagrees with the measured one in $d\sigma/d\Omega$. To reconcile them, taking as reference point $E = 1$ keV, one should have $g_n^2/4\pi < 3.4 \times 10^{-11}$.}
\[
\frac{g_\mu g_n}{4\pi} \approx -10^{-7} \approx -10^{-5} \alpha,
\]
(4)
roughly independent from the value of \(\mu \lesssim 5 \text{ MeV} \). When \(\mu \) increases, the Yukawa nature of the interaction mediated by the \(\phi \) boson becomes important and Eq. (4) becomes an upper limit:

\[
\frac{g_\mu g_n}{4\pi} \leq -10^{-7}.
\]
(5)

On the other hand, the value for \(\frac{g_\mu^2}{4\pi} \) is predicted by the Weinberg-Salam theory to be

\[
\frac{g_\mu^2}{4\pi} = \frac{1}{2\pi} \frac{G_{\text{em}}^2}{\sqrt{2}} = 1.3 \times 10^{-8}.
\]

Using this equation and the empirical strength given in Eqs. (4) and (5), one then gets a limit value for \(\frac{g_\mu^2}{4\pi} \):

\[
\frac{g_\mu^2}{4\pi} \geq 0.7 \times 10^{-6},
\]
which has to be consistent with the bound given in Eq. (2). For this to be true, we must have \(\mu > 13 \text{ MeV} \). Furthermore, even more significant than this bound is the fact that for \(\mu \approx 1 \text{ MeV} \), the limit in Eq. (2) disagrees by five orders of magnitude with the value for \(g_n^2/4\pi \) required to explain the muonic X-ray discrepancy. This, in our opinion, constitutes the most clear evidence against the existence of a very light \(\phi \) boson.

To even strengthen this conclusion, it is also important to know that other arguments, based on different experiments, can be given against the existence of a low-mass scalar boson. Let us summarize them, before concluding. One of these arguments\(^7\) is based on the effects eventually produced by the \(\phi \)-exchange potential

\[
\delta V_{\mu n} = -\frac{g_\mu g_n}{4\pi} A \frac{e^{-\mu r}}{r},
\]
on the recently measured\(^8\) separation \(\Delta E_{\text{He}} (2P_{3/2} - 2S_{1/2}) \) between the 2P\(_{3/2}\) and the 2S\(_{1/2}\) levels of the helium muonic ion (\(\mu^+\text{He}\))\(^+\). Such a potential would give a contribution to this splitting,

\[
\delta E = \frac{g_\mu g_n}{4\pi} \frac{\mu^2}{2m_\mu} \left[1 + \frac{\mu}{2m_\mu} \right]^{-4},
\]
which should be less than \(10^{-2} \text{ eV} \) in order not to introduce more than one standard deviation discrepancy between theory and experiment, which are at present in agreement. One therefore gets the following limit (\(\mu \) in MeV):

\[
\left| \frac{g_e g_n}{4\pi} \right| \mu^2 (1 + 0.6 \mu^{-1}) < 0.7 \times 10^{-8},
\]
which, combined with Eq. (4), gives \(\mu < 0.5 \text{ MeV} \) or \(\mu < 5.5 \text{ MeV} \).

Another argument, suggested by Adler, Dashen and Treiman, is based on the effects of the interaction between the electron and the neutron mediated by the \(\phi \) boson:

\[
\delta V_{en} = - \frac{g_e g_n}{4\pi} \frac{e^{-\mu r}}{r},
\]
on the scattering of thermal neutrons from atomic electrons. The contribution of this potential to the neutron-electron spin averaged scattering length \(a \) is given by (\(m_n = \text{neutron mass} \)):

\[
\delta a = 2 \frac{m_n g_e g_n}{\mu^2} \frac{e^{-\mu r}}{4\pi}.
\]
On the other hand, the best determinations of \(a \) are \((-1.34 \pm 0.03) \times 10^{-3} \text{ fm} \) \(^{10}\) and \((-1.56 \pm 0.04) \times 10^{-3} \text{ fm} \) \(^{11}\), which are correctly accounted for by the main part of the theoretical scattering length, namely the neutron magnetic moment contribution

\[
a_{\text{NM}} = \frac{\alpha n}{2M} = -1.47 \times 10^{-3} \text{ fm}.
\]
We can then put a limit on \(|\delta a| \leq 0.3 \times 10^{-3} \text{ fm} \), which in turn gives the following limit on the quantities of interest

\[
\left| \frac{g_e g_n}{4\pi} \right| \frac{1}{(\mu \text{ MeV})^2} \leq 0.8 \times 10^{-9}.
\]
Making the additional assumption \(g_e = (m_e/m_\mu) g_\mu \) as suggested by the structure of the \(\phi \)-boson couplings in the mentioned theories of weak and electromagnetic interaction, and using the empirical strength of Eq. (4), one then gets a lower limit on the \(\phi \) mass, \(\mu > 0.7 \text{ MeV} \).

In conclusion, even though the actual limits on the mass \(\mu \) coming both from the \((\mu^7\text{He})^+ \) fine structure separation and from the low-energy electron-neutron scattering are not so stringent as the bound from the neutron-nucleus scattering since they rely on the estimates of the uncertainties of the various measured quantities, it is nevertheless significant that any effect from the existence of the

\[\text{---}
\]

\(^{\text{(*)}}\) Actually a more detailed analysis\(^7\) shows that even for \(\mu > 5.5 \text{ MeV} \) the \(\phi \)-boson effects needed to explain the \(\mu \)-mesic X-ray discrepancy are not consistent with the present knowledge of the fine structure separation in the \((\mu^7\text{He})^+ \) system.
low-mass ϕ boson does not show up in various very different physical situations. Of course, all this means that the muonic X-ray discrepancy remains to be explained as a different effect.

Acknowledgement

...We thank E.J. Blomqvist for useful conversations...
REFERENCES

