Long-term variability in the X-ray emission of RX J0720.4-3125

Cor P. de Vries¹, Jacco Vink¹, Mariano Méndez¹, and Frank Verbunt²

¹ SRON, National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
² Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands

Received <date1>, accepted <date2>

Abstract. We detect a gradual, long-term change in the shape of the X-ray spectrum of the isolated neutron star RX J0720.4-3125, such that the spectrum of the source can no longer be described as a blackbody spectrum. The change is accompanied by an energy-dependent change in the pulse profile. If the X-ray emission is influenced by the magnetic field of the pulsar, these changes in spectral shape may point to precession of the neutron star.

Key words. neutron stars, X-rays

Table 1. XMM-Newton observations of RX J0720.4-3125

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Observation</th>
<th>Date</th>
<th>Julian date</th>
<th>Duration (ksec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0078</td>
<td>0124100101</td>
<td>13-05-2000</td>
<td>2451677.9</td>
<td>65</td>
</tr>
<tr>
<td>0175</td>
<td>0132520301</td>
<td>21-11-2000</td>
<td>2451870.3</td>
<td>30</td>
</tr>
<tr>
<td>0533</td>
<td>0156960201</td>
<td>06-11-2002</td>
<td>2452585.4</td>
<td>30</td>
</tr>
<tr>
<td>0534</td>
<td>0156960401</td>
<td>08-11-2002</td>
<td>2452498.5</td>
<td>32</td>
</tr>
<tr>
<td>0622</td>
<td>0158360201</td>
<td>02-05-2003</td>
<td>2452762.5</td>
<td>81</td>
</tr>
<tr>
<td>0711</td>
<td>0161960401</td>
<td>27-10-2003</td>
<td>2452940.5</td>
<td>45</td>
</tr>
</tbody>
</table>

it was observed several times by XMM-Newton for calibration purposes. However, as we will demonstrate here, the spectrum of RX J0720.4-3125 has slowly hardened and cannot be described anymore by a blackbody spectrum, while the pulse shape has become narrower and the phase dependence of the spectrum changed with time.

While we were finalising this paper, Haberl et al. (2003b) released a pre-print in which they show that the spectrum of RX J0720.4-3125 depends on the pulse phase. They also discuss changes in the spectrum as found with EPIC, but assign these to calibration inaccuracies.

2. Observations

Table 1 gives the log of XMM-Newton observations of RX J0720.4-3125. Since the source spectrum is rather soft, and most of the emission comes from below ~1.8 keV, we use RGS (den Herder et al. 2001) data for the spectral analysis; due to the nature of the gratings, the effective area of the RGS is rather insensitive to changes in CCD gain and charge transfer inefficiency. The RGS was operated in normal spectroscopic mode, yielding a time resolution of 4 s, making it unsuitable for a proper timing analysis. Therefore, for this purpose we use EPIC/PN (Strüder et al. 2001) since it has the largest effective...
area among the instruments on board XMM-Newton, and operates in a high-time resolution mode.

During the first four observations, PN was operated in full-frame mode, which produces an image of 378×384 pixels with a time resolution of 73.4 ms. During the last two observations the PN was switched to small-window mode, yielding images of 63×64 pixels with a time resolution of 6 ms. The thin filter was used in revolutions 0078, 0533, and 0534, the medium one in revolution 0175, and the thick one in revolution 0622. The observation of revolution 0711 started with the thin filter, and later switched to the medium one. All data were processed using the standard XMM-Newton software SAS version 5.4.1.

2.1. Spectral Analysis

Figure 1 shows the RGS spectra for the 6 revolutions. The individual RGS’s agree with each other within the statistical uncertainties, so the data from both RGS’s have been combined. From the Figure it is apparent that the spectrum of RX J0720.4-3125 gradually changes, while the total flux appears to remain fairly constant. The change of the spectrum is most noticeable in orbit 0711, where there is an increase of the flux in the $15 \AA$ to $25 \AA$ range, and a drop in the flux above $30 \AA$.

To verify that the RGS instrument is stable and that its effective area does not change, we have also analyzed data from two sources that are stable on a time scale of years.

The first source is the supernova remnant 1E 0102-72.3 in the Small Magellanic Cloud, a calibration source that is regularly observed with the RGS. From the strength of the bright emission lines from this source in the range 13 to 23 \AA, as measured in data from orbits 0065 to 0711, we find that the effective area of the instrument in this range changes by less than 3%. In the long wavelength range the SNR 0102-72.3 spectrum has a weak carbon line at 33.7 \AA. The upper limit on possible changes in the effective area of the RGS instrument at this wavelength is about 10%, mainly determined by the limited statistics in this line. All data from 1E 0102-72.3 are consistent with no change in the RGS effective area. The second source is the calibration source Mrk 421. An upper limit to any change in the neutral Oxygen absorption edge around 22.8 \AA, which is a tracer of possible instrument contamination (e.g. ice), is 5%.

Since all upper limits on possible changes in effective area are well below the changes seen in RX J0720.4-3125 we conclude that the X-ray spectrum of RX J0720.4-3125 itself is subject to change over the course of about 3 years.

For the spectral analysis we use the XSPEC spectral fitting package (Arnaud 1996). As noted by Paerels et al. (2001) the data of orbit 0078 can be well fitted by an absorbed blackbody spectrum. With the improved calibration of the RGS we find a temperature of $kT_{BB} = 86.7 \pm 0.3$ eV and an interstellar column density of $N_H = (1.41 \pm 0.07) \times 10^{20}$ cm$^{-2}$, in reasonable agreement with the values obtained with the Chandra LETGS instrument, $kT_{BB} = 81.4 \pm 1.3$ eV and $N_H = (1.32 \pm 0.14) \times 10^{20}$ cm$^{-2}$, by Kaplan et al. (2003). The LETGS observation was made in February 2000, four months before the first XMM-Newton observation.

Fits with the same model to the remaining spectra yield a temperature increase with time, as well as changes as large as $\Delta N_H \sim 5 \times 10^{20}$ cm$^{-2}$ in the interstellar absorption. The model, however, does not provide satisfactory fits to all the spectra.

Next, we fit all the data simultaneously. Since large variations of the interstellar absorption over such a short period are unlikely, we assume that N_H remains constant; we therefore couple this parameter for all observations, while we let the blackbody temperature and normalization vary freely between observations (Table 2). Although these fits serve to emphasize the gradual hardening of the spectra, half of the spectra, especially that of revolution 0711, are poorly fit by this model.

Following Haberl et al. (2003a) and van Kerkwijk (2004), next we fit the data with a model that consists of a blackbody affected by additional absorption by a broad gaussian line, as might be expected in the case of cyclotron absorption. In these fits, we constrain the parameters of the blackbody model to be the same for all the observations, whereas the parameters of the
Fig. 2. Pulse profile of RX J0720.4-3125 in the 0.1–1.2 keV band (panels 1 and 3 from top to bottom) and hardness-ratio light curve (panels 2 and 4) for revolutions 0078 and 0711 using EPIC/PN. The 0.1–1.2 keV light curves are normalised to 1 at the maximum. Phase 0 is defined when the full-band light curve reaches its maximum. The solid line is the best sinusoidal fit to the full-band light curve of revolution 0078. The same sinusoidal fit is overplotted on top of the full-band light curve of revolution 0078. The same sinusoidal fit is overplotted to the full-band pulse profiles obtained from the other revolution for comparison. For both observations the thin filter was used.

2.2. Timing analysis

Starting from the raw data, we first produce a list of calibrated events. To reduce pile-up, in the next step we select only single events as well as events that are not affected by some of the imperfections (bad columns, hot pixels, etc.) of the CCDs. We extract events within a 39 arcsec circle centred on the source. We barycenter these events using the SAS routine BARYCEN version 1.13.4, and we then separate the events according to their energy in 3 event lists; the bands that we use are 0.1 to 1.2 keV, 0.1 to 0.4 keV, and 0.4 to 0.8 keV, respectively.

For each observation we find the best period in the full band using an epoch folding technique; in all cases we find a period of 8.391 s, consistent with the value previously found for this source by Kaplan et al. (2005). We then produce folded light curves in the three bands, and we also compute a folded hardness-ratio light curve from the ratio of the 0.4–0.8 keV and the 0.1–0.4 keV light curves. In Figure 2 we show the 0.1–1.2 keV and the hardness-ratio light curves. For each observation we define the phase such that the maximum of the full-band light curve occurs at phase zero; the phase of the hardness-ratio light curves is the same as for the full-band light curves.

The pulse profile in the 0.1–1.2 keV band, as well as the hardness-ratio pulse profile, change from one observation to the other. The first panel in Figure 2 shows a sinusoidal fit to the pulse profile during the first observation; the same sine function is overplotted to the full-band pulse profiles obtained from the other observations. It is apparent that the pulse profile becomes narrower with time.

At the same time, the hardness-ratio pulse profile also changes. In the first observation there is a clear modulation, and the hardness-ratio profile leads the full-band light curve by 0.017 s, in phase. In the following observations the amplitude of the hardness-ratio modulation decreases and the phase difference between the full-band and the hardness-ratio light curves is consistent with zero. Eventually, in the last observation the modulation increases again, but now the hardness-ratio light curve lags the full-band light curve by −0.126 ± 0.010 in phase.

3. Conclusions and discussion

The XMM-Newton data of RX J0720.4-3125 show that the spectrum of the source changes on a time scale of years, the first time ever that the X-ray spectrum of an isolated neutron star, other than soft gamma-ray repeaters or anomalous X-ray pulsars, is seen to change. Whereas the changes are most pronounced in the last observation, we think that the actual change is gradual, as witnessed by a gradual increase in the temperatures derived from the blackbody fits; or by a gradual increase in the index of the powerlaw in the fits with a blackbody multiplied with a power law (Table 2 and Figure 2). The spectral changes are accompanied by an energy-dependent change in the pulse shape; in particular the pulse phase where the spectrum is hardest has moved with respect to the phase of maximum flux (Figure 2).

The phase (i.e. angle) dependent spectrum of single neutron stars is currently not explained. The broad absorption
features have been interpreted as a proton-cyclotron absorption feature \cite{Haberl2003}. In pulsars with a strong field (probably stronger than the limit for RX J0720.4-3125) the absorption feature may be weakened by the strong-field quantum electrodynamics effect of vacuum resonance mode conversion \cite{Lai2003}. The neutron star spectra have also been interpreted as due to cyclotron-resonance scattering of the spectrum from the surface of the neutron star, by electron-positron pairs in the magnetosphere \cite{Ruderman2003}. For both interpretations the spectrum is likely to be angle and energy dependent, in accordance with the variation of the X-ray spectrum (as measured by hardness ratio) with pulse phase.

To explain the gradual, long-term variation we consider two general possibilities: either the intrinsic spectrum of the neutron star changes, or our view of the neutron star changes. The intrinsic spectrum of the neutron star could change, due to energy release deep in the neutron star, due to a glitch for example, causing the surface to gradually become hotter. We consider this unlikely as the explanation for the changing spectrum of RX J0720.4-3125, because it does not explain the change in pulse shape. Also this model would predict the total flux to increase with the temperature, in contrast to what is observed. Another possibility, valid for Ruderman's model, would be that the electron-positron plasma surrounding the neutron star changes. So far, there is no specific prediction in the Ruderman model for changes in the magnetospheric plasma on a year-long time scale.

Therefore, we suggest that the variation in the spectrum of RX J0720.4-3125 is caused by a change in the angle under which we see the emitting region and/or the covering electron-positron plasma, caused by precession of the neutron star. Precession arises when the form of the neutron star deviates from a perfect sphere and its rotation is not around a principal axis \cite{Link2003}. For both interpretations of the phase dependence of the spectra in more detail; to obtain a reliable period derivative of the pulses, and look for the phase changes expected from precession; and finally to see whether the changes continue.

Acknowledgements. The authors wish to thank Frank Haberl for a very useful discussion on the effect of EPIC-pn observation modes and Jan-Willem den Herder for his continuous stimulation.

References

Ruderman, M. 2003, astro-ph/0310777

Table 2. Spectral fitsa to the observations of RX J0720.4-3125

<table>
<thead>
<tr>
<th>Orbit</th>
<th>kT (eV)</th>
<th>L_{bb}</th>
<th>Γ</th>
<th>Flux d (10-23 Å)</th>
<th>Flux d (23-38 Å)</th>
<th>Flux d (10-38 Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0078</td>
<td>81.3(3)</td>
<td>2.54(3)</td>
<td>1.44(5)</td>
<td>1.86(4)</td>
<td>4.72(7)</td>
<td>6.58(10)</td>
</tr>
<tr>
<td>0175</td>
<td>81.4(5)</td>
<td>2.42(3)</td>
<td>1.45(5)</td>
<td>1.77(5)</td>
<td>4.49(7)</td>
<td>6.26(11)</td>
</tr>
<tr>
<td>0533</td>
<td>84.6(4)</td>
<td>2.22(3)</td>
<td>1.74(5)</td>
<td>1.89(4)</td>
<td>4.20(7)</td>
<td>6.09(11)</td>
</tr>
<tr>
<td>0534</td>
<td>84.0(4)</td>
<td>2.28(3)</td>
<td>1.67(5)</td>
<td>1.88(4)</td>
<td>4.31(7)</td>
<td>6.19(11)</td>
</tr>
<tr>
<td>0622</td>
<td>86.3(3)</td>
<td>2.07(2)</td>
<td>1.85(6)</td>
<td>1.93(4)</td>
<td>4.08(7)</td>
<td>6.01(06)</td>
</tr>
<tr>
<td>0711</td>
<td>98.2(4)</td>
<td>1.96(2)</td>
<td>2.70(8)</td>
<td>2.81(4)</td>
<td>4.01(6)</td>
<td>6.82(09)</td>
</tr>
</tbody>
</table>

a Fit range 10–38 Å. For the interstellar absorption component we use cross sections from \cite{Verner1996}, and abundances from \cite{Wilms2000}. Numbers in parentheses are 1–σ confidence limits in the last digit(s). For the fits with a blackbody, the best-fit value for $N_{	ext{H}}$, constrained to be the same in all observations, is (4.3 ± 0.1) × 1020 cm-2.

b For the fits with a blackbody times a power law, the best-fit values for $N_{	ext{H}}$, kT, and the bolometric luminosity of the blackbody, constrained to be the same in all observations are, respectively, (1.28 ± 0.1) × 1020 cm-2, 70.3 ± 0.1 eV, and (3.04 ± 0.02) × 1032 d_{300}^2 erg s-1, where d_{300} is the distance to RX J0720.4-3125 in units of 300 pc. For the fits with a blackbody model, $\chi^2 = 874.1$ for 662 degrees of freedom. For the fits with a blackbody times a power-law model $\chi^2 = 776.8$ for 608 degrees of freedom.

c Bolometric luminosity of the blackbody in units of 1032 erg s-1.

d Index of the power law in the model that consists of a blackbody times a power law (see text).

e Observed flux, obtained from the fits with a blackbody times a power-law; only statistical errors are indicated. The systematic errors in the flux are of order 5–10%.