AN INSTRUMENT TO MEASURE THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND RADIATION AT CENTIMETER WAVELENGTHS

A. Kogut, D. J. Fixsen, S. Levin, M. Limon, P. M. Lubin, P. Mirel, M. Seiffert, and E. Wollack

Submitted to The Astrophysical Journal

ABSTRACT

The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the temperature of the cosmic microwave background at centimeter wavelengths. ARCADE uses narrow-band cryogenic radiometers to compare the sky to an external full-aperture calibrator. To minimize potential sources of systematic error, ARCADE uses a novel open-aperture design which maintains the antennas and calibrator at temperatures near 3 K at the mouth of an open bucket Dewar, without windows or other warm objects between the antennas and the sky. We discuss the design and performance of the ARCADE instrument from its 2001 and 2003 flights.

Subject headings: instrumentation; balloons; cosmic microwave background; cosmology: observations

1. INTRODUCTION

The cosmic microwave background is a thermal relic from a hot, dense phase in the early universe. Deviations from a perfect blackbody spectrum carry information on the energetics of the early universe. Measurements across the peak of the spectrum limit deviations from a blackbody to less than 50 parts per million (Fixsen et al. 1996; Gush et al. 1994). Direct observational limits at longer wavelengths, though, are weak: distortions as large as 5% could exist at wavelengths of several centimeters or longer without violating existing observations.

Plausible physical processes can generate observable distortions at long wavelengths without violating limits established at shorter wavelengths. The decay of massive particles produced near the Big Bang imparts a chemical potential to the CMB, creating a deficit of photons at long wavelengths (Sunyaev & Zeldovich 1970; Silk & Stebbins 1983; Burigana et al. 1993; McDonald et al. 2001; Hansen & Haiman 2004). Reionization of the universe by the first collapsed structures distorts the spectrum through thermal bremsstrahlung by the ionized gas, characterized by a quadratic rise in temperature at long wavelengths (Bartlett & Stebbins 1991). Reionization is expected to produce a cosmological free-free background with amplitude of a few mK at frequency 3 GHz (Haiman & Loeb 1997; Ol1999). Such a signal is well below current observational limits, which only constrain free-free distortions to $\Delta T < 19$ mK at 3 GHz (Bersanelli et al. 1994).

Detecting the signal from reionization requires accuracy of order 1 mK at frequencies below 30 GHz. Coherent receivers using High Electron Mobility Transistor (HEMT) amplifiers can easily achieve this sensitivity, leaving systematic error as the limiting uncertainty in previous CMB measurements below 30 GHz (see Kogut 1999 for an experimental review). These fall into 3 categories. Below 2 GHz the dominant uncertainty is synchrotron emission within the Galaxy. Ground-based measurements at higher frequencies are limited by atmospheric emission, while balloon-borne experiments have been limited by emission from warm parts of the instrument. The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a fully cryogenic, balloon-borne instrument designed to avoid these sources of systematic error and provide new limits on deviations from a blackbody spectrum at centimeter wavelengths comparable to the limits established at millimeter wavelengths.

ARCADE represents a long-term effort to characterize the CMB spectrum at cm wavelengths in order to constrain the thermal history of the early universe. An engineering flight designed to test the cold open optics launched from Ft Sumner, NM on November 2 2001 UT. A second flight, optimized for CMB observations, launched from Palestine, TX on June 15 2003 UT. Scientific analysis of the 2003 flight is presented by Fixsen et al. (2004). We describe the design of the ARCADE instrument and discuss its performance during the 2001 and 2003 flights.

2. INSTRUMENT DESIGN

Figure 1 shows an overview of the ARCADE instrument design. It consists of a set of narrow-band cryogenic radiometers observing at frequencies 10 and 30 GHz from a balloon payload at 35 km altitude. Each radiometer measures the difference in power between a beam-defining corrugated horn antenna (16° full width at half maximum) and a temperature-controlled internal reference load. An independently controlled external blackbody calibrator (emissivity $\epsilon > 0.9997$) covers each antenna aperture in turn, so that each antenna alternately views the sky or a known blackbody. The calibrator, antennas, and radiometers are maintained near 2.7 K at the mouth of an open bucket Dewar with no windows or other warm object between the antennas and the sky. Fountain-effect pumps lift superfluid liquid helium to reservoirs at the antenna aperture plane and inside the external calibrator to maintain cryogenic temperatures. Boiloff helium gas from the main Dewar tank vents...
Superfluid balloon antennas view the sky and can be commanded open or closed at float. The deployable lid covers the optics during launch and ascent, which is located well away from the antenna apertures. A dewar serves as counterweights, allowing the suspension to move a pallet at the other end of the gondola from the balloon. Batteries and flight electronics mounted on a movable pallet 64 m below the balloon from direct view of the antennas. The dewar can also be moved in flight to trim the gondola pitch. During nominal operation the dewar is vertical while the gondola rotates at approximately 0.5 RPM to scan the antennas around a ring 30° from the zenith. No pointing control is required; magnetometers and inclinometers allow reconstructing within 3°. A Global Positioning System receiver collects position and altitude information. Table 1 summarizes the payload.

2.1. Radiometers

Figure 3 shows a block diagram of the radiometers. Each radiometer uses a cryogenic HEMT-based front-end amplifier. They are switched at 100 Hz between a corrugated conical horn antenna and a temperature-controlled waveguide load using latching ferrite waveguide switches with measured insertion loss below 0.4 dB. The low insertion loss greatly reduces requirements for thermal monitoring and control of the instrument front end. All of the radiometer back ends are housed in a temperature-controlled module mounted to the outside of the dewar, with stainless steel waveguide (30 GHz) or coax (10 GHz) providing the RF link between the cryogenic and room-temperature components. The back end of each radiometer is split into two frequency sub-channels: a wide-band channel for maximum sensitivity, and a narrow-band channel restricted to protected RF bands. Video preamplifiers following each detector diode separately amplify the dc and ac portions of the signal, proportional to the total power on the diode and the antenna-load temperature difference, respectively. A lockin amplifier demodulates the switched (ac) signal and integrates for one second to produce an output proportional to the difference in power between the antenna and the internal load. The lockin output, total power, and assorted housekeeping voltages are digitized at 1 Hz and stored in an on-board computer. Table 2 summarizes the radiometer properties.

The internal reference load has a dual purpose: it provides a stable cold reference for the fast gain chop, and can be adjusted in temperature during flight to eliminate the radiometric offset resulting from imbalance in the switch or the two arms of the radiometer. The reference load consists of a waveguide termination mounted on a temperature-controlled plate. Temperature control and readout consist of individually calibrated ruthenium oxide thermistors in a digitally controlled proportional-integral-differential loop.

2.2. Antennas And Beam Pattern

Each receiver is fed by a corrugated conical horn antenna scaled in wavelength to produce identical beam shapes at 10 and 30 GHz. To avoid convective instabilities in the helium vapor barrier, the instrument should remain nearly vertical during observations. We reconcile this requirement with the need for sky coverage (and avoiding direct view of the balloon) by mounting the antennas at a 30° angle from the zenith, slicing each antenna at the aperture plane. Quarter-wave chokes surround the resulting elliptical aperture and provide further suppression of side lobes. Stainless steel flares at the dewar rim function as a cold (20 K) ground shield to

Fig. 1.— ARCADE instrument schematic. Cryogenic radiometers compare the sky to an external blackbody calibrator. The antennas and external calibrator are maintained near 2.7 K at the mouth of an open bucket dewar; there are no windows or other warm objects between the antenna and the sky.
block emission from the Earth.

We measured the co-polar and cross-polar beam patterns of each radiometer over 4π sr at the Goddard Electro-Magnetic Anechoic Chamber. Beam mapping used the entire dewar in flight configuration, including the flares and external calibrator. Figure 4 shows the co-polar beam patterns at 10.1 and 30.3 GHz in a stereographic projection centered on the dewar aperture plane. The beam centroids are located 30° from the zenith with azimuthal separation 90°. Despite the sliced geometry, the beams retain circular symmetry past -10 dB, with full width at half maximum 16° at both 10 and 30 GHz. The deformation evident at -30 dB towards low elevation angles shows the effect of the nearby cold flares.

Warm objects in the beam contribute to the measured sky signal. We reduce the contribution from the flight train by mounting a reflective plate to the gondola suspension and extending over the Dewar aperture. The reflector plate consists of metallized foam and blocks direct view of the rotator assembly, ladder, parachute, and termination package while partially obscuring the balloon. We model emission from the suspension, reflector, and balloon by convolving the temperature, emissivity, and position of these objects with the measured beam patterns. Figure 5 shows the relevant geometry. The reflector re-directs the part of the beams that would otherwise view the flight train to blank regions of the sky. The antennas map the sky to an external blackbody calibrator. Data taken it situ with the target immersed in liquid helium during 8 independent calibrations spaced 4 years apart agree within 2 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

2.4. Gondola Electronics

The gondola electronics consist of a flight computer, telemetry system, magnetometer-inclinometer box, drive electronics for the various motors, analog interface unit, and central electronics box. The central electronics box houses the ambient temperature and pressure readout electronics, voltage and current measuring modules, relay boards and the power distribution system, and various other electronics. The analog interface unit contains 48 16-bit A/D channels and 12 12-bit D/A channels. This unit communicates with the flight computer which consists of a 1486-based embedded computer running a multi-tasking, real-time operating system. The computer assembly contains a hard disk capable of storing an entire flight’s worth of data. The flight computer communicates with the cryogenic temperature sensor readout electronics (Fixsen et al. 2004) via an asynchronous serial (RS-232) interface. Flight data are stored on-board and relayed to the ground using a discriminator channel on the Consolidated Instrument Package (CIP) provided by the National Scientific Balloon Facility (NSBF). Commands are sent to the flight computer via our 408 MHz

![Fig. 3.— Block diagram of the ARCADE radiometers.](image-url)
telemetry uplink that allows 4800 baud ASCII data communication.

A video camera mounted on the reflector above the Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.

3. CRYOGENIC DESIGN AND PERFORMANCE

ARCADE uses cryogenic optics and calibrator on a 48-cm diameter clear aperture operating without windows at temperatures near 2.7 K. To eliminate any spillover of the antenna beams onto warm portions of the Dewar walls, the antenna apertures and external calibrator are located at the mouth of an open bucket Dewar. Two fountain-effect superfluid pumps move helium from the main Dewar into a reservoir located inside the calibrator; a third pump lifts liquid helium to cool the aperture plane. Boiloff gas from the 220 liter main tank vents to model thermometry during the calibration process degrade the absolute accuracy to 2 mK at temperatures near 2.7 K.

3.2. Heat Flow

The ARCADE instrument is mounted at the mouth of an open fiberglass/aluminum composite bucket Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.

3.1. Thermometry

We monitor cryogenic temperatures using 4-wire ac resistance measurements of 27 ruthenium oxide thermometers read out every 1.067 seconds (Fixsen et al. 2002). Seven of the thermometers are located in the external calibrator. Eight additional thermometers monitor critical temperatures (antenna throat, internal load, Dicke switch, and cryogenic HEMT amplifier) on each of the 2 radiometers. The remaining thermometers monitor the temperature of the aperture plane, cold flares, superfluid pumps, liquid helium reservoirs (main tank, aperture plane, and external calibrator) as well as the Dewar walls and the instrument support structure inside the Dewar.

The in-flight thermometry compares the resistance of each thermometer to a set of 4 calibration resistors spanning the dynamic range of the thermometer resistances. The calibration resistors are part of the readout electronics board, located in a temperature-controlled enclosure. One of the calibration resistors includes the electrical harness into the Dewar to monitor possible effects from electrical pickup or stray capacitance. The flight computer uses a lookup table to infer a temperature for each thermometer using temperature-resistance curves derived from ground tests. The instrument is mainly a transfer standard to compare the sky to the external calibrator target; precise knowledge of the absolute temperature is required only for the external calibrator. The resistance to temperature calibration for the thermometers in the external calibrator was obtained multiple times over several years by measuring the resistance of the embedded thermometers with the calibrator submerged in liquid helium, as the pressure over the bath was slowly lowered. Observations of the superfluid helium transition at 2.1768 K using the flight readout electronics agree within 0.3 mK over multiple calibrations spaced 4 years apart, providing a cross-check on the absolute thermometry. Thermal gradients during the calibration process degrade the absolute accuracy to 2 mK at temperatures near 2.7 K.

3.2. Heat Flow

The ARCADE instrument is mounted at the mouth of an open fiberglass/aluminum composite bucket Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.

3.1. Thermometry

We monitor cryogenic temperatures using 4-wire ac resistance measurements of 27 ruthenium oxide thermometers read out every 1.067 seconds (Fixsen et al. 2002). Seven of the thermometers are located in the external calibrator. Eight additional thermometers monitor critical temperatures (antenna throat, internal load, Dicke switch, and cryogenic HEMT amplifier) on each of the 2 radiometers. The remaining thermometers monitor the temperature of the aperture plane, cold flares, superfluid pumps, liquid helium reservoirs (main tank, aperture plane, and external calibrator) as well as the Dewar walls and the instrument support structure inside the Dewar.

The in-flight thermometry compares the resistance of each thermometer to a set of 4 calibration resistors spanning the dynamic range of the thermometer resistances. The calibration resistors are part of the readout electronics board, located in a temperature-controlled enclosure. One of the calibration resistors includes the electrical harness into the Dewar to monitor possible effects from electrical pickup or stray capacitance. The flight computer uses a lookup table to infer a temperature for each thermometer using temperature-resistance curves derived from ground tests. The instrument is mainly a transfer standard to compare the sky to the external calibrator target; precise knowledge of the absolute temperature is required only for the external calibrator. The resistance to temperature calibration for the thermometers in the external calibrator was obtained multiple times over several years by measuring the resistance of the embedded thermometers with the calibrator submerged in liquid helium, as the pressure over the bath was slowly lowered. Observations of the superfluid helium transition at 2.1768 K using the flight readout electronics agree within 0.3 mK over multiple calibrations spaced 4 years apart, providing a cross-check on the absolute thermometry. Thermal gradients during the calibration process degrade the absolute accuracy to 2 mK at temperatures near 2.7 K.

3.2. Heat Flow

The ARCADE instrument is mounted at the mouth of an open fiberglass/aluminum composite bucket Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.

3.1. Thermometry

We monitor cryogenic temperatures using 4-wire ac resistance measurements of 27 ruthenium oxide thermometers read out every 1.067 seconds (Fixsen et al. 2002). Seven of the thermometers are located in the external calibrator. Eight additional thermometers monitor critical temperatures (antenna throat, internal load, Dicke switch, and cryogenic HEMT amplifier) on each of the 2 radiometers. The remaining thermometers monitor the temperature of the aperture plane, cold flares, superfluid pumps, liquid helium reservoirs (main tank, aperture plane, and external calibrator) as well as the Dewar walls and the instrument support structure inside the Dewar.

The in-flight thermometry compares the resistance of each thermometer to a set of 4 calibration resistors spanning the dynamic range of the thermometer resistances. The calibration resistors are part of the readout electronics board, located in a temperature-controlled enclosure. One of the calibration resistors includes the electrical harness into the Dewar to monitor possible effects from electrical pickup or stray capacitance. The flight computer uses a lookup table to infer a temperature for each thermometer using temperature-resistance curves derived from ground tests. The instrument is mainly a transfer standard to compare the sky to the external calibrator target; precise knowledge of the absolute temperature is required only for the external calibrator. The resistance to temperature calibration for the thermometers in the external calibrator was obtained multiple times over several years by measuring the resistance of the embedded thermometers with the calibrator submerged in liquid helium, as the pressure over the bath was slowly lowered. Observations of the superfluid helium transition at 2.1768 K using the flight readout electronics agree within 0.3 mK over multiple calibrations spaced 4 years apart, providing a cross-check on the absolute thermometry. Thermal gradients during the calibration process degrade the absolute accuracy to 2 mK at temperatures near 2.7 K.

3.2. Heat Flow

The ARCADE instrument is mounted at the mouth of an open fiberglass/aluminum composite bucket Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.

3.1. Thermometry

We monitor cryogenic temperatures using 4-wire ac resistance measurements of 27 ruthenium oxide thermometers read out every 1.067 seconds (Fixsen et al. 2002). Seven of the thermometers are located in the external calibrator. Eight additional thermometers monitor critical temperatures (antenna throat, internal load, Dicke switch, and cryogenic HEMT amplifier) on each of the 2 radiometers. The remaining thermometers monitor the temperature of the aperture plane, cold flares, superfluid pumps, liquid helium reservoirs (main tank, aperture plane, and external calibrator) as well as the Dewar walls and the instrument support structure inside the Dewar.

The in-flight thermometry compares the resistance of each thermometer to a set of 4 calibration resistors spanning the dynamic range of the thermometer resistances. The calibration resistors are part of the readout electronics board, located in a temperature-controlled enclosure. One of the calibration resistors includes the electrical harness into the Dewar to monitor possible effects from electrical pickup or stray capacitance. The flight computer uses a lookup table to infer a temperature for each thermometer using temperature-resistance curves derived from ground tests. The instrument is mainly a transfer standard to compare the sky to the external calibrator target; precise knowledge of the absolute temperature is required only for the external calibrator. The resistance to temperature calibration for the thermometers in the external calibrator was obtained multiple times over several years by measuring the resistance of the embedded thermometers with the calibrator submerged in liquid helium, as the pressure over the bath was slowly lowered. Observations of the superfluid helium transition at 2.1768 K using the flight readout electronics agree within 0.3 mK over multiple calibrations spaced 4 years apart, providing a cross-check on the absolute thermometry. Thermal gradients during the calibration process degrade the absolute accuracy to 2 mK at temperatures near 2.7 K.

3.2. Heat Flow

The ARCADE instrument is mounted at the mouth of an open fiberglass/aluminum composite bucket Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.

3.1. Thermometry

We monitor cryogenic temperatures using 4-wire ac resistance measurements of 27 ruthenium oxide thermometers read out every 1.067 seconds (Fixsen et al. 2002). Seven of the thermometers are located in the external calibrator. Eight additional thermometers monitor critical temperatures (antenna throat, internal load, Dicke switch, and cryogenic HEMT amplifier) on each of the 2 radiometers. The remaining thermometers monitor the temperature of the aperture plane, cold flares, superfluid pumps, liquid helium reservoirs (main tank, aperture plane, and external calibrator) as well as the Dewar walls and the instrument support structure inside the Dewar.

The in-flight thermometry compares the resistance of each thermometer to a set of 4 calibration resistors spanning the dynamic range of the thermometer resistances. The calibration resistors are part of the readout electronics board, located in a temperature-controlled enclosure. One of the calibration resistors includes the electrical harness into the Dewar to monitor possible effects from electrical pickup or stray capacitance. The flight computer uses a lookup table to infer a temperature for each thermometer using temperature-resistance curves derived from ground tests. The instrument is mainly a transfer standard to compare the sky to the external calibrator target; precise knowledge of the absolute temperature is required only for the external calibrator. The resistance to temperature calibration for the thermometers in the external calibrator was obtained multiple times over several years by measuring the resistance of the embedded thermometers with the calibrator submerged in liquid helium, as the pressure over the bath was slowly lowered. Observations of the superfluid helium transition at 2.1768 K using the flight readout electronics agree within 0.3 mK over multiple calibrations spaced 4 years apart, providing a cross-check on the absolute thermometry. Thermal gradients during the calibration process degrade the absolute accuracy to 2 mK at temperatures near 2.7 K.

3.2. Heat Flow

The ARCADE instrument is mounted at the mouth of an open fiberglass/aluminum composite bucket Dewar aperture allows direct imaging of the cold optics in flight. Two banks of light-emitting diodes provide the necessary illumination. Ground tests revealed interference from the video transmitter in the 10 GHz wide channel. We do not use data from any channel for science analysis during times when the camera and video transmitter are turned on.
The efflux of helium gas above the aperture does not eliminate condensation of atmospheric nitrogen onto the cryogenic optics, but does reduce it to levels compatible with the desired CMB observations. Flight data show excess heat dissipation on the aperture plane, consistent with an accumulation rate of approximately 200 g hr$^{-1}$ of nitrogen onto the aperture, a heat source of order 6 W. Visual examination using the video camera confirms this slow accumulation of nitrogen ice, with several mm of “frost” visible on the optics an hour after opening the ascent lid. Nitrogen ice is nearly transparent at cm wavelengths; since the ice cools to the same temperature as the rest of the optics, modest accumulations primarily affect only mechanical operations. The 2003 flight included a large (kW) heater on the cold optics, including the antenna aperture and throat sections. With the superfluid pumps off, the aperture plane and calibrator have only weak thermal coupling to the Dewar. Raising the aperture plane and calibrator above 80 K for 15 minutes suffices to remove accumulated nitrogen ice without only a modest impact on the main liquid helium reservoir.

4. DISCUSSION

Both the 2001 and 2003 flights demonstrate the viability of large open-aperture cryogenic optics for CMB measurements. The ARCADE cryogenic design maintains the external calibrator, antennas, and cryogenic radiometers at temperatures near 2.7 K for many hours at 35 km altitude. Cold boiloff gas vented through the aperture plane reduces condensation of atmospheric nitrogen to levels consistent with the desired CMB observations; the primary impact is the cooling required to handle the additional heat load on the aperture. The current instrument is relatively small (two frequency channels at 10 and 30 GHz) and is intended primarily as a pathfinder to verify the cryogenic design under flight conditions. A larger second-generation instrument with 6 channels extending down to 3 GHz is currently under construction and is scheduled to launch in 2005.

We thank the NSBF staff in Palestine and Ft Sumner for their capable support throughout integration, launch, flight, and recovery. We thank M. DiPirro and D. McHugh of the Cryogenic Fluids Branch at GSFC for supporting the ARCADE design and thermometer calibration. Interns Gary Palmer II and Anatoly Brekhman made many of the thermometers used in the 2003 flight. Rachel Maire and Alexander Rischart assisted payload integration. Leah Johnson provided valuable assistance for the flight electronics. Elizabeth Cantando aided cryogenic integration and provided flight support. Doron Halevi and Peter Meinhold integrated RF communications. ARCADE is supported by the National Aeronautics and Space Administration under the Space Astrophysics and Research Analysis program of the Office of Space Science. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Table 3

<table>
<thead>
<tr>
<th>Component</th>
<th>Dewar Tip Anglea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-10 -5 0 5 10</td>
</tr>
<tr>
<td>Balloon</td>
<td>2.1 1.4 0.7 0.2 0.1</td>
</tr>
<tr>
<td>Reflector</td>
<td>25.6 10.6 4.8 2.4 1.3</td>
</tr>
<tr>
<td>Camera</td>
<td>0.4 0.2 0.2 0.1 0.1</td>
</tr>
<tr>
<td>Lights</td>
<td>0.2 0.2 0.3 0.3 0.2</td>
</tr>
<tr>
<td>Suspension</td>
<td>4.7 3.9 3.2 2.5 1.8</td>
</tr>
<tr>
<td>Cold Flares</td>
<td>1.4 1.4 1.4 1.4 1.4</td>
</tr>
<tr>
<td>Ground</td>
<td>0.3 0.3 0.4 0.4 0.4</td>
</tr>
<tr>
<td>Total</td>
<td>34.7 18.1 10.8 7.4 5.3</td>
</tr>
</tbody>
</table>

aPositive angles tip the Dewar forward and the antenna beams away from the zenith.
REFERENCES

Burgman R., De Zotti, G., & Danese, L. 1995, ˚ a, 303, 323
Kogut, A. 1992, in Current Topics in Astrofundamental Physics, ed. N. Sanchez & A. Zichichi (Singapore: World Scientific), 137