Dependence of the transition from Townsend to glow discharge on secondary emission

Yu.P. Raizer1, Ute Ebert2,3 and D.D. Šijačić2

1Inst. for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia,
2CWI, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands, and
(Dated: March 2, 2004)

In a recent paper Šijačić and Ebert have systematically studied the transition from Townsend to glow discharge, referring to older work from von Engel (1934) up to Raizer (1991), and they stated a strong dependence on secondary emission γ from the cathode. We here show that the earlier results of von Engel and Raizer on the small current expansion about the Townsend limit actually are the limit of small γ of the new expression; and that for larger γ the old and the new results vary by no more than a factor of 2. We discuss the γ-dependence of the transition which is rather strong for short gaps.

In the recent article 3, the transition from Townsend to glow discharge was re-investigated with analytical and numerical means. On the analytical side, a systematic small current expansion about the Townsend limit was performed and it was stated:

“The result agrees qualitatively with the one given by Raizer 2 and Engel and Steenbeck 3. In particular, the leading order correction is also of order α0(j/μ)2. However, the explicit coefficient of j2 differs: while the coefficient in 2,3 does not depend on γ at all, we find that the dependence on γ is essential, as the plot of F in Fig. 1 (of 1) clearly indicates. In fact, within the relevant range of 10^-6 ≤ γ ≤ 10^0, this coefficient varies by almost four orders of magnitude. We remark that it indeed would be quite a surprising mathematical result if the Townsend limit itself would depend on γ, but the small current expansion about it would not.”

Here we remark that while the new systematic calculation was correct, the interpretation and comparison to earlier work requires some correction.

To be precise, the model treated in 1,2,3 and by many other authors is a one-dimensional time independent Townsend or glow discharge characterized by the classical equations

\[ \partial_x J_\epsilon = |J_\epsilon| \tilde{a}(|E|), \quad \partial_x J_+ = |J_\epsilon| \tilde{a}(|E|), \]
\[ \partial_x E = \frac{e}{\epsilon_0} (n_+ - n_\epsilon), \]

for electron and ion particle current

\[ J_\epsilon = -n_\epsilon \mu_\epsilon E, \quad J_+ = n_+ \mu_+ E, \]

and electric field E. Impact ionization in the bulk of the discharge is given by the Townsend approximation

\[ \tilde{a}(|E|) = a_0 \exp(-E_0/|E|). \]

(In 1, the generalized case \( \tilde{a}(|E|) = a_0 \exp(-E_0/|E|) \) \(^s\) was treated.) Since ions are generated by impact within the gap and drift towards the cathode, there are no ions at the anode at \( x = 0 \)

\[ n_+(0) = 0. \]

The ions impacting on the cathode liberate free electrons with rate γ, therefore secondary emission from the cathode is given by

\[ |J_\epsilon(d)| = \gamma |J_+(d)|, \]

where \( x = d \) is the position at the cathode. The electrical potential difference between the electrodes is

\[ U = \int_0^d dx \, E(x), \]

and the total electric current is

\[ J = e (n_+ \mu_+ + n_\epsilon \mu_\epsilon) E, \quad \partial_x J = 0. \]

It is useful to introduce dimensionless voltage and current

\[ u = \frac{U}{E_0/a_0}, \quad j = \frac{J}{e_0 a_0 E_0 \mu_+ E_0}, \]

where \( j = j/\mu \) with the definition of \( j \) from 1. It should be noted that only bulk gas parameters have been used as units; therefore the dimensionless \( u \) and \( j \) are independent of \( \gamma \).

Further dimensional analysis yields that the current-voltage-characteristics \( u = u(j) \) can depend on three parameters only, namely on the dimensionless gap length \( L = a_0 d \), on the coefficient \( \gamma \) of secondary emission and on the mobility ratio \( \mu = \mu_+ / \mu_\epsilon \). In practice, the dependence on the small parameter \( \mu \) is almost negligibly weak 1, therefore \( u = u(j, L, \gamma) \). Here the dimensionless gap length \( L \) is related to \( \mu d \) through \( L = A \mu d \) as long as the coefficient \( a_0 \) is related to pressure like \( a_0 = Ap \).

How strongly does the characteristics \( u = u(j, L, \gamma) \) depend on \( \gamma \)? In 1, Šijačić and Ebert calculated the whole Townsend-to-glow regime numerically and derived by expanding systematically in powers of current \( j \) about the Townsend limit

\[ u = u_T - A_{SE} j^{2} + O(j^{3}), \quad A_{SE} = \frac{\xi_T}{2 a_0^3} \frac{F(\gamma, \mu)}{a_0 E_T^{3}}, \]

\[ \alpha(\xi_T) = e^{-1/|\xi_T|}, \]

where \( \xi_T \) is the Townsend field (in V/cm), \( F(\gamma, \mu) \) is a slowly varying function of \( \gamma \) and \( \mu \), and \( A_{SE} \) is a slowly varying function of \( \gamma \) and \( \mu \). The values of these functions are given in 1.
which gave an excellent fit to the numerical solutions. Here
\[
F(\gamma, \mu) = \frac{L_\gamma^3}{12} + (1 + \mu) \left( 2 - L_\gamma \gamma - L_\gamma e^{-L_\gamma} \right) + (1 + \mu)^2 \left( \frac{1 - e^{-2L_\gamma}}{2} - \frac{(1 - e^{-L_\gamma})^2}{L_\gamma} \right),
\]

\[
L_\gamma = \ln \frac{1 + \gamma}{\gamma},
\]

(13)

and \(E_T\) and \(u_T\) are field and potential in the Townsend limit of “vanishing” current, i.e., with breakdown values
\[
E_T = \frac{1}{\ln(L/L_\gamma)}, \quad u_T = \frac{L}{\ln(L/L_\gamma)}.
\]

(14)

The minimal potential \(u_T\) is \(L_\gamma^3\), it is attained for gap length \(L = L_\gamma e^1\) on the Paschen curve \(u_T = u_T(L)\). (12).

In [1], it was argued that the coefficient \(A_SE\) in [10] strongly depends on \(\gamma\) due to the factor \(F(\gamma, \mu)\) in [11]. This factor strongly depends on \(\gamma\), for small \(\gamma\) actually in leading order like \(L_\gamma^3\) (12). (Note that there is a discrepancy between equation (50) in [1] for \(F(\gamma, \mu)\) which is reproduced as Eq. (13) in the present paper, and the plot in Fig. 1 of [1] for \(10^{-1} < \gamma < 10^6\). Equation (50) in [1] is correct and the figure erroneous. \(F(\gamma, \mu)\) actually varies by five orders of magnitude on \(10^{-6} < \gamma < 10^0\), not only by four.)

At this point, the question how the remaining factor depends on \(\gamma\) was omitted. In fact, the denominator \((\alpha E_T)^3\) in [10] has in leading order the same strong dependence on \(\gamma\), since
\[
\frac{1}{(\alpha E_T)^3} = \left( \frac{L}{L_\gamma \ln(L/L_\gamma)} \right)^3,
\]

(15)

according to the Townsend breakdown criterion \(\alpha L = L_\gamma\), cf. [12]. (14). Therefore the leading order dependence on \(L_\gamma^3\) of the coefficient of \(\gamma^2\) in [10] is cancelled and replaced by a dependence on \(L_\gamma^3\), while the term with \(\alpha''\) has the classical explicit form
\[
E_T \alpha'' = \frac{1 - 2E_T}{2E_T} = \frac{\ln(L/L_\gamma) - 2}{2}.
\]

(16)

In [2], another small current expansion was derived from [10], assuming \(n_+ \gg n_e\) and \(n_+(x) \approx \text{const}\). This approximation was criticised in [1], since it is in contradiction with the boundary condition [16] — however, for very small \(\gamma\), it is a good approximation in a large part of the gap. The resulting equations (8.8) and (8.10) from [2] read in the notation of the present paper
\[
J_L = \frac{\epsilon_0 \mu U_T^2}{2d^3}.
\]

(18)

(Here a misprint in [2] was corrected, namely the missing factor \(U_T\) in the coefficient of \(J^2\) in [17], and the factor \(1/(8\pi)\) in (8.8) is substituted by \(\epsilon_0/2\) in [18], since we here write the Poisson equation (4) in MKS units rather than in Gaussian units, cf. (8.6) in [2].)

In [17], the physical current density \(J\) is compared to \(J_L\). \(J_L\) is the current density where deviations from the Townsend limit through space charges start to occur; it explicitly depends on \(\gamma\) through \(U_T\).

Comparison of the results of Sičić/Ebert (SE) and Engel/Raizer (ER) [17] show that the coefficients \(A_{SE,ER}\) in the expansion [10] are related like
\[
A_SE = A_{ER} \frac{12 F(\gamma, \mu)}{L_\gamma^3}, \quad A_{ER} = \frac{1 - 2E_T}{2E_T} \frac{L_\gamma^3}{12 E_T^2}.
\]

(19)

The coefficients \(A_{SE}\) and \(A_{ER}\) depend in the same way on \(L\), and they are essentially independent of \(\mu\) for realistic values of \(\mu\). Therefore the ratio \(A_{SE}/A_{ER}\) depends only on \(\gamma\) as shown in Fig. 1. For \(\gamma \to 0\), the ratio tends to unity. For a large range of \(\gamma\) values, the deviation is not too large, approaching a factor 0.44 for \(\gamma = 10^{-1}\).

\begin{figure}[h]
  \centering
  \includegraphics[width=\textwidth]{fig1}
  \caption{The ratio \(A_{SE}/A_{ER}\) of the small current expansions by Sičić/Ebert and Engel/Raizer as a function of \(\gamma\).}
  \label{fig:fig1}
\end{figure}

Fig. 2 shows that the factor \(A_{SE}\) indeed strongly depends on \(\gamma\) for the given \(L\).

The strong dependence of \(A_{SE}\) or \(A_{ER}\) on \(\gamma\) for a given short gap length \(L\) means that we can obtain both negative and positive differential resistance \(dU/dJ\) close to the Townsend limit for the same gap length. Therefore the choice of \(\gamma\) is important since it can change the differential conductivity and therefore the stability of a Townsend discharge in a short gap.

Acknowledgments

Y.R. acknowledges hospitality of CWI Amsterdam and D.S. a Ph.D. grant of the Dutch physics funding agency FOM.
FIG. 2: The normalized coefficient $A = 24 A_{SE}/(L^3 \ln L)$ as a function of $\gamma$ for gap lengths $L = A pd = 15, 30, 60, 120, 240$ (dashed and solid lines with labels).