Cronin Effect at Different Rapidities at RHIC

G G Barnaföldi†‡, G Papp‡, P Lévai†, G Fai¶
† RMKI KFKI, P.O. Box 49, Budapest, H-1525, Hungary
‡ Eötvös University, Pázmány P. 1/A, Budapest, H-1117, Hungary
¶ CNR, Kent State University, Kent, OH 44242, USA
E-mail: bergely@rmki.kfki.hu

Abstract. Calculations of the nuclear modification factor, \(R_{dAu} \), for \(\pi^0 \) production in \(dAu \) collisions at \(\sqrt{s} = 200 \text{ AGeV} \) are presented. The applied pQCD-improved parton model incorporates intrinsic \(k_T \). Nuclear multiscattering and nuclear shadowing are considered in the \(Au \) nucleus. Theoretical results are displayed for midrapidity and high pseudo-rapidity (\(\eta \)), and compared to preliminary PHENIX and BRAHMS data.

PACS numbers: 24.85.+p, 13.85.Ni, 13.85.Qk, 25.75.Dw

Introduction

Midrapidity \(AuAu \) experiments at RHIC energies display strong suppression in \(\pi \) spectra at high \(p_T \) [1], and this effect was explained by jet energy loss in hot dense matter [2]. To investigate whether initial state effects play a role in this suppression, \(dAu \) experiments were carried out. Instead of suppression, an enhancement has been seen in minimum bias data [3] (see “Cronin effect” in \(pA \) collisions at FERMILAB energies [4, 5]). This result indicates the absence of extra shadowing (“gluon-saturation”), related to proposed wave-function modifications in the fast moving \(Au \) nucleus (see Ref. [6]). However, new data with centrality dependence in midrapidity \(dAu \) collisions [7] could provide more detailed information about the interplay between nuclear multiscattering [8] and (standard) nuclear shadowing [9]. Analysis of recent data at forward rapidities [10] can give more insight about the \(\eta \)-dependence of nuclear effects.

Here we display the results of our NLO pQCD calculations on pion production at 2 GeV < \(p_T < 10 \) GeV at different centralities. In parallel, we consider available data at forward rapidities in \(dAu \) collisions [10], and investigate them theoretically.

1. Calculation method in a nutshell

We perform calculations on \(\pi^0 \) production in \(dAu \) collision using a pQCD-improved parton model extended by a Glauber-type collision geometry [11-13]. Introducing
the $T_{dAu}(b, r)$ nuclear thickness function with a Woods–Saxon formula for Au, the invariant cross section is obtained as [14]:

$$E_{\pi} \frac{d\sigma_{dAu}^{d\pi}}{d^3p} = \int d^2b d^2r T_{dAu}(b, r) \frac{1}{s} \sum_{abc} \int_{v_w/z_c}^{1} \frac{d\hat{v}}{\hat{v}(1-\hat{v})} \int_1^1 \frac{d\hat{w}}{\hat{w}} \times \int \int \frac{1}{d\hat{c}} \int d^2k_T \int d^2k_{T_b} f_{a/d}(x_a, k_{T_a}, Q^2) f_{b/A}(x_b, k_{T_b}, Q^2) \times \left[\frac{d\hat{\sigma}}{d\hat{v}} \delta(1-\hat{w}) + \frac{\alpha_s(Q_r)}{\pi} K_{ab,c}(\hat{s}, \hat{v}, \hat{w}, Q, Q_r, \hat{Q}) \right] \frac{D_\pi^3(z_c, \hat{Q}^2)}{\pi z_c^2}. \quad (1)$$

In our next-to-leading order (NLO) calculation [11], $d\hat{\sigma}/d\hat{v}$ represents the Born cross section of the partonic subprocess, and $K_{ab,c}(\hat{s}, \hat{v}, \hat{w}, Q, Q_r, \hat{Q})$ is the corresponding higher order correction term [11, 12, 13]. We fix the factorization and renormalization scales and connect them to the momentum of the intermediate jet, $Q = Q_r = (4/3)p_q$ (where $p_q = p_T/z_c$), reproducing pp data at RHIC with high precision at high p_T [14].

The approximate form of the 3-dimensional parton distribution function (PDF) is:

$$f_{a/p}(x_a, k_{T_a}, Q^2) = f_{a/p}(x_a, Q^2) \cdot g_{a/p}(k_{T_a}). \quad (2)$$

Here, the function $f_{a/p}(x_a, Q^2)$ represents the standard NLO PDF as a function of momentum fraction of the incoming parton, x_a, at scale Q (we use MRST(cg)). The partonic transverse-momentum distribution is defined phenomenologically as a 2-dimensional Gaussian, $g_{a/p}(k_T)$, and characterized by an “intrinsic k_T” width [11, 15].

Nuclear multiscattering is accounted for through broadening of the incoming parton’s k_T-distribution function, namely an increase in the width of the Gaussian:

$$\langle k_T^2 \rangle_{pp} = \langle k_T^2 \rangle_{pp} + \Delta(b) \quad \text{where} \quad \Delta(b) = C \cdot h_{pA}(b). \quad (3)$$

Pion production in pp collision at RHIC energy indicates the value $\langle k_T^2 \rangle_{pp} = 2.5$ GeV2 [14] [15]. Considering the multiscattering part, $h_{pA}(b)$ describes the number of effective NN collisions (or effective collision length for partons) at impact parameter b, which impart an average transverse momentum squared, C. At SPS energies the effectivity function $h_{pA}(b)$ was written in terms of the number of collisions suffered by the incoming proton in the target nucleus. For this energy region we have found a limited number of semihard collisions, $\nu_m - 1 = 4$ and the value $C = 0.35$ GeV2 [16], which implies a total broadening $\Delta \sim 1$ GeV2. We will assume these values at RHIC energies, although the precise energy and rapidity dependence of ν_m and C is not yet verified.

The nuclear PDF, $f_{b/A}(x_b, k_{T_b}, Q^2)$, incorporates the standard shadowing function (e.g. Ref. [1], HIJING). Extra gluon saturation (CGC) [10] would require a further suppression factor to be introduced. The experimental data will decide if such an extra suppression factor is necessary.

The fragmentation function, $D_\pi^3(z_c, \hat{Q}^2)$, in eq. [14] is responsible for the hadronization of parton c into a pion with momentum fraction z_c at scale $\hat{Q} = (4/3)p_T$.

We present results on the nuclear modification factor, defined as follows:

$$R_{dAu} = \frac{1}{N_{\text{bin}}} \frac{E_{\pi} d\sigma_{dAu}^{d\pi}}{d^3p} = \frac{E_{\pi} d\sigma_{dAu}^{d\pi}(\text{with nuclear effects})}{d^3p} = \frac{E_{\pi} d\sigma_{dAu}^{d\pi}(\text{no nuclear effects})}{d^3p}. \quad (4)$$
2. Results on \(dAu\) collisions at \(\eta = 0\) in different centrality bins

In Fig. 1 we display the measured \(R_{dAu}\) for pion production at \(\sqrt{s} = 200\ AGeV\) at different centralities: \(0 – 20\%\), \(20 – 40\%\), \(40 – 60\%\) and \(60 – 88\%\) \[7\]. The first three centrality bins (upto 60 \%) are similar to each other, only a slight decrease can be seen.

Our theoretical pQCD results, containing multiscattering and shadowing (solid lines), show similar tendency and overlap with the preliminary PHENIX data. We predicted this behavior in Ref. \[14\]. These data indicate the plateau of the applied Woods–Saxon density profile of the \(Au\) nucleus and the presence of a \(b\)-independent shadowing. The difference between data and theory in the most peripheral case requires further study. To indicate the importance of nuclear multiscattering in \(dAu\) collision we also show results containing only shadowing (dotted lines).

3. Minimum bias results in \(dAu\) collisions at forward rapidities

Figure 2 displays our pQCD results on pion production at forward rapidities (solid lines) compared to BRAHMS data on charged-hadron production \[10\]. The agreement is reasonable where comparison can be made. At the highest rapidity, \(\eta = 3.2\), an interesting peak structure appears in the data, which requires further study. The increasing strength of standard nuclear shadowing with increasing rapidity is indicated by the pQCD results containing only shadowing (dotted lines). For comparison we display the CGC result for low-\(p_T\) from Ref. \[6\] at \(\eta = 3.2\) (dashed line).
Cronin Effect at Different Rapidities at RHIC

Figure 2. Theoretical pQCD results on R_{dAu} for pions at $\eta = 0, 1, 2.2$ and 3.2, compared to BRAHMS data on charged particles [10]. CGC result is from Ref. [6].

Acknowledgments

One of the authors (GGB) would like to thank to the organizers for local support. This work was supported by grants: T043455, T047050, and DE-FG02-86ER40251.

References