Nonlinear Realization of Supersymmetry and Superconformal Symmetry

T.E. Clark* and S.T. Love†

Department of Physics, Purdue University, West Lafayette, IN 47907-2036

Abstract

Nonlinear realizations describing the spontaneous breakdown of supersymmetry and R symmetry are constructed using the Goldstino and R axion fields. The associated R current, supersymmetry current and energy-momentum tensor are shown to be related under the nonlinear supersymmetry transformations. Nonlinear realizations of the superconformal algebra carried by these degrees of freedom are also displayed. The divergences of the R and dilatation currents are related to the divergence of the superconformal currents through nonlinear supersymmetry transformations which in turn relates the explicit breakings of these symmetries.

*E-mail address: clark@physics.purdue.edu

†E-mail address: love@physics.purdue.edu
1. INTRODUCTION

Effective Lagrangians based on nonlinear realizations of spontaneously broken symmetries provide an extremely useful, model independent, way of ensapsulating the dynamical constraints mandated by the symmetry breakdown [1]-[2]. Such techniques have been successfully applied to a wide range of physical problems most notably in the form of nonlinear sigma models [3]. In this paper, we construct nonlinear realizations of spontaneously broken supersymmetry (SUSY) and R symmetry. If supersymmetry is to be realized in nature, it must be as a broken symmetry. The breaking mechanism which maintains the perponderance of the dynamical constraints of the symmetry and hence is theoretically most attractive, is a spontaneous one.

Thus we envision some underlying theory in which both the supersymmetry and the R symmetry are spontaneously broken. The specific dynamics responsible for the symmetry breakings is left unspecified. As such, we allow for the possibility that the dynamics producing the SUSY breaking has a completely different origin than that producing the R symmetry breaking and moreover that the scales at which the symmetry breakings occur could be completely independent.

The relevant effective Lagrangian describing the low energy degrees of freedom contains the Nambu-Goldstone fermion of spontaneously broken supersymmetry [4]-[5], the Goldstino, and the (pseudo-) Nambu-Goldstone boson of spontaneously broken R symmetry, the R-axion. Moreover, if the spontaneously broken supersymmetry is gauged, the erstwhile Goldstino degrees of freedom are absorbed to become the longitudinal (spin 1/2) modes of the spin 3/2 gravitino via the super-Higgs mechanism. As such the dynamics of those modes are given by that of the Goldstino. In the next section, we construct the nonlinear realization of SUSY in terms of these Nambu-Goldstone modes leading to actions invariant under nonlinear SUSY, but possibly containing some soft explicit R symmetry breaking in addition to its spontaneous breaking. Next, the R current, supersymmetry currents and energy-momentum tensor are obtained and shown to be related under nonlinear SUSY trans-
formations. Finally, we construct the nonlinear realization of the superconformal algebra using these Nambu-Goldstone fields and form the superconformal currents and dilatation currents. We explicitly display how the divergence of the R current and divergence of the dilatation current are related to the divergence of the superconformal current through the nonlinear SUSY transformation thus relating the various R, scale and superconformal explicit symmetry breaking terms in the effective Lagrangian.
2. NONLINEAR REALIZATIONS OF SUSY AND R SYMMETRY: INVARIANT ACTIONS

A method [2] for constructing nonlinear realizations of spontaneously broken internal symmetries employs the construction of the coset group element whose coset space coordinates are the Nambu-Goldstone bosons and then extracting the changes in these coordinates under group multiplication. This procedure requires a slight modification for spontaneously broken spacetime symmetries [6]-[7]. This follows since motion in the coset space is accompanied by motion in spacetime. Since the supersymmetry generators, $Q_\alpha, \bar{Q}_{\dot{\alpha}}$, and the R-symmetry charge together satisfy the supersymmetry algebra [8]:

$$\{Q_\alpha, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^\mu_{\alpha\dot{\alpha}} P_\mu ; ~ \{Q_\alpha, Q_\beta\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$$

$$[P^\mu, Q_\alpha] = [P^\mu, \bar{Q}_{\dot{\alpha}}] = [P^\mu, R] = 0$$

$$[R, Q_\alpha] = Q_\alpha ; ~ [R, \bar{Q}_{\dot{\alpha}}] = -\bar{Q}_{\dot{\alpha}},$$

(2.1)

where P^μ are the spacetime translation generators, it follows that both supersymmetry and R symmetry constitute spacetime symmetries. Consequently, to construct nonlinear realizations of spontaneously broken supersymmetry and R symmetry, one needs to include the product of the unbroken translation group element along with the coset group elements.

Such a product of translation and coset group elements is given by

$$\Omega(x, \lambda, \bar{\lambda}, a) = e^{-ix_\mu P^\mu} e^{i(\lambda^\alpha(x)Q_\alpha + \bar{\lambda}_{\dot{\alpha}}(x)Q^\dot{\alpha})} e^{ia(x)R} \equiv \Omega(x).$$

(2.2)

Here $\lambda^\alpha, \bar{\lambda}_{\dot{\alpha}}$ are the 2-component Weyl spinor Goldstino fields of the spontaneously broken supersymmetry and a is the R-axion field, the (pseudo-) Nambu-Goldstone boson of the spontaneously broken R symmetry. They act as the coordinates of coset space corresponding to symmetry pattern: Poincaré × Supersymmetry × R → Poincaré. Next define the group element

$$g(0, \xi, \bar{\xi}, \rho) = e^{i(\xi^\alpha Q_\alpha + \bar{\xi}_{\dot{\alpha}} Q^\dot{\alpha})} e^{i\rho R},$$

(2.3)

where $\xi^\alpha, \bar{\xi}_{\dot{\alpha}}$ are spacetime independent 2-component Weyl spinors parametrizing the SUSY transformations while the spacetime independent ρ parametrizes the R-transformation and
consider the product \(g(0, \xi, \bar{\xi}, \rho)\Omega(x, \lambda, \bar{\lambda}, a) \). Exploiting the supersymmetry algebra, Eq. (2.1), this product of group elements is seen to again take the form of a product of translation and coset group elements but with translated spacetime points and coset coordinates. That is,

\[
g(0, \xi, \bar{\xi}, \rho)\Omega(x, \lambda, \bar{\lambda}, a) = e^{-ix'_\mu P^\mu} e^{i(\lambda^\alpha(x')Q_\alpha + \bar{\lambda}_\dot{\alpha}(x')\bar{Q}^{\dot{\alpha}})} e^{ia'(x')} = \Omega(x', \lambda', \bar{\lambda}', a') \equiv \Omega'(x') .
\]

(2.4)

For any field \(\phi^i \) the total (\(\Delta \)) variation is defined as

\[
\phi'(x') = \phi(x) + \Delta\phi(x) . \tag{2.5}
\]

The total nonlinear SUSY and \(R \) variations of the Nambu-Goldstone degrees of freedom are

\[
\Delta Q(\xi, \bar{\xi})\lambda^\alpha(x) = \xi^\alpha ; \quad \Delta R(\rho)\lambda^\alpha(x) = i\rho\lambda^\alpha(x)
\]

\[
\Delta Q(\xi, \bar{\xi})\bar{\lambda}_{\dot{\alpha}}(x) = \bar{\xi}_{\dot{\alpha}} ; \quad \Delta R(\rho)\bar{\lambda}_{\dot{\alpha}}(x) = -i\rho\bar{\lambda}_{\dot{\alpha}}(x)
\]

\[
\Delta Q(\xi, \bar{\xi})a(x) = 0 ; \quad \Delta R(\rho)a(x) = \rho . \tag{2.6}
\]

Here \(\Delta Q(\xi, \bar{\xi}) = \xi^\alpha \Delta Q_\alpha + \bar{\xi}_{\dot{\alpha}} \Delta Q_{\dot{\alpha}} \) and \(\Delta R(\rho) = \rho\Delta R \).

The accompanying movement in spacetime is given by

\[
x'^\mu = x^\mu + \Delta x^\mu , \tag{2.7}
\]

with

\[
\Delta Q(\xi, \bar{\xi})x^\mu = -\Lambda^\mu(\xi, \bar{\xi}) ; \quad \Delta R(\rho)x^\mu = 0 \tag{2.8}
\]

and

\[
\Lambda^\mu(\xi, \bar{\xi}) = -i[\lambda(x)\sigma^\mu \bar{\xi} - \xi\sigma^\mu \bar{\lambda}(x)] . \tag{2.9}
\]

In general, an intrinsic (\(\delta \)) variation is defined as

\[
\delta\phi^i(x) = \phi'(x) - \phi(x) = \Delta\phi^i(x) - \Delta x^\mu \partial_\mu \phi^i(x) \tag{2.10}
\]

which for nonlinear SUSY and \(R \) take the form
\[\delta Q(\xi, \bar{\xi}) \lambda^\alpha(x) = \xi^\alpha + \Lambda^\nu(\xi, \bar{\xi}) \partial_\mu \lambda^\alpha(x) \quad ; \quad \delta R(\rho) \lambda^\alpha(x) = i\rho \lambda^\alpha(x) \]

\[\delta Q(\xi, \bar{\xi}) \bar{\lambda}_\dot{\alpha}(x) = \bar{\xi}_\dot{\alpha} + \Lambda^\nu(\xi, \bar{\xi}) \partial_\mu \bar{\lambda}_\dot{\alpha}(x) \quad ; \quad \delta R(\rho) \bar{\lambda}_\dot{\alpha}(x) = -i\rho \bar{\lambda}_\dot{\alpha}(x) \]

\[\delta Q(\xi, \bar{\xi}) a(x) = \Lambda^\mu(\xi, \bar{\xi}) \partial_\mu a(x) \quad ; \quad \delta R(\rho) a(x) = \rho, \] (2.11)

where \(\delta Q(\xi, \bar{\xi}) = \xi^\alpha \delta Q_\alpha + \delta Q_\alpha \bar{\xi}^\dot{\alpha} \) and \(\delta R(\rho) = \rho \delta R \). A field transforming as \(\Lambda^\nu(\xi, \bar{\xi}) \partial_\mu \) under nonlinear SUSY is said to carry the standard realization [9]-[10].

In order to construct invariant actions, it proves convenient to introduce covariant derivatives. Towards this end, we define the Mauer-Cartan 1-form as

\[(\Omega^{-1}d\Omega)(x) = \Omega^{-1}(x, \lambda, \bar{\lambda}, a) dx^\mu \partial_\mu \Omega(x, \lambda, \bar{\lambda}, a) \] (2.12)

which, in light of Eq. (2.4), is invariant under the total variations:

\[(\Omega^{-1}d\Omega)'(x') = (\Omega^{-1}d\Omega)(x). \] (2.13)

Expanding the 1-form in terms of the translation, SUSY and \(R \) generators gives

\[\Omega^{-1}(x, \lambda, \bar{\lambda}, a)d\Omega(x, \lambda, \bar{\lambda}, a) = i[-d\omega^\mu(x)P_\mu + d\omega^\alpha_\mu(x)Q_\alpha + d\bar{\omega}_\dot{\alpha}(x)\bar{Q}_\dot{\alpha} + d\omega_R(x)R]. \] (2.14)

The coefficient coordinate differentials are readily extracted as

\[d\omega^\nu(x) = dx^\mu A_\mu^\nu(x) \]
\[d\omega^\alpha_\mu(x) = dx^\mu e^{-ia(x)} \partial_\nu \lambda^\alpha(x) = d\omega^\mu(x)e^{-ia(x)} D_\mu \lambda^\alpha(x) = d\omega^\mu(x) \nabla_\mu \lambda^\alpha(x) \]
\[d\bar{\omega}_\dot{\alpha}(x) = e^{ia(x)} \partial_\mu \bar{\lambda}_\dot{\alpha}(x) = d\omega^\mu(x)e^{ia(x)} D_\mu \bar{\lambda}_\dot{\alpha}(x) = d\omega^\mu(x) \nabla_\mu \bar{\lambda}_\dot{\alpha}(x) \]
\[d\omega_R(x) = dx^\mu \partial_\mu a(x) d\omega^\nu(x) D_\mu a(x) = d\omega^\mu(x) \nabla_\mu a(x), \] (2.15)

where [4]

\[A_\mu^\nu = \eta_\mu^\nu + i\lambda \bar{\sigma}_\mu \sigma^\nu \bar{\lambda}. \] (2.16)

Here we have defined the combined SUSY and \(R \) covariant derivatives:

\[\nabla_\mu \lambda^\alpha(x) = e^{-ia(x)} D_\mu \lambda^\alpha(x) \]
\[\nabla_\mu \bar{\lambda}_\dot{\alpha}(x) = e^{ia(x)} D_\mu \bar{\lambda}_\dot{\alpha}(x) \] (2.16)
\[\nabla_\mu a(x) = D_\mu a(x), \quad (2.17) \]

while

\[D_\mu = A^{-1}_\mu \nu \partial_\nu \quad (2.18) \]

is the nonlinear SUSY covariant derivative.

From the invariance of the Mauer-Cartan form, it follows that \(d\omega^\mu, \nabla_\mu \lambda, \nabla_\mu \bar{\lambda}, \nabla_\mu a \) are all invariant under the total \(\Delta \)-variations

\[(d\omega)'^\mu(x') = d\omega^\mu(x) \]
\[(\nabla_\mu \lambda)'^\alpha(x') = \nabla_\mu \lambda^\alpha(x) \]
\[(\nabla_\mu \bar{\lambda})'_{\bar{\alpha}}(x') = \nabla_\mu \bar{\lambda}_{\bar{\alpha}}(x) \]
\[(\nabla_\mu a)'(x') = \nabla_\mu a(x). \quad (2.19) \]

Under the intrinsic nonlinear SUSY variations, \(\delta_Q(\xi, \bar{\xi}) \), the covariant derivatives, \(\nabla_\mu \phi^i \), transform as the standard realization, while being invariant under the intrinsic \(\delta_R(\rho) \) variation:

\[\delta_Q(\xi, \bar{\xi})(\nabla_\mu \phi^i)(x) = \Lambda^\nu(\xi, \bar{\xi})\partial_\nu(\nabla_\mu \phi^i)(x) \quad ; \quad \delta_R(\rho)(\nabla_\mu \phi^i)(x) = 0. \quad (2.20) \]

The SUSY covariant derivative, \(D_\mu \phi^i \), also transform as the standard realization under the intrinsic \(\delta \)-variations:

\[\delta_Q(\xi, \bar{\xi})\nabla_\mu \phi^i(x) = \Lambda^\nu(\xi, \bar{\xi})\partial_\nu(\nabla_\mu \phi^i(x)). \quad (2.21) \]

Using the \(\Delta \) invariance of \(d\omega^\mu \) along with

\[dx'^\mu = \frac{\partial x'^\mu}{\partial x^\nu} dx^\nu = dx^\nu(n^\mu_\nu - \partial_\nu \Lambda^\mu) \equiv dx^\nu G^\mu_\nu, \quad (2.22) \]

it follows that

\[A'(\mu)^\nu(x') = G^{-1}_\mu^\rho(x) A^\rho_\nu(x). \]
\[A^{-1} \nu' \mu'(x') = A^{-1} \nu \rho(x) G^\rho_\mu(x) \]

(2.23)

producing the intrinsic variations:

\[
\delta Q(\xi, \bar{\xi}) A_{\mu}^{\nu} = \Delta Q(\xi, \bar{\xi}) A_{\mu}^{\nu} - \Delta Q(\xi, \bar{\xi}) x^\rho \partial_\rho A_{\mu}^{\nu}
\]

\[
= (\partial_\mu \Lambda^\rho(\xi, \bar{\xi})) A_{\rho}^{\nu} + \Lambda^\rho(\xi, \bar{\xi}) \partial_\rho A_{\mu}^{\nu}
\]

\[
\delta Q(\xi, \bar{\xi}) A^{-1} A_{\mu}^{\nu} = \Delta Q(\xi, \bar{\xi}) A^{-1} A_{\mu}^{\nu} - \Delta x^\rho \partial_\rho A^{-1} A_{\mu}^{\nu}
\]

\[
= -A^{-1} \nu \rho \partial_\rho \Lambda^\mu(\xi, \bar{\xi}) + \Lambda^\rho(\xi, \bar{\xi}) \partial_\rho A^{-1} A_{\mu}^{\nu}
\]

\[
\delta Q(\xi, \bar{\xi}) \det A = \det A A_{\nu}^{-1} \mu \delta Q(\xi, \bar{\xi}) A_{\mu}^{\nu}
\]

\[
= \partial_\mu [A^\mu(\xi, \bar{\xi}) \ \det A]
\]

(2.24)

and

\[\delta R(\rho) A_{\mu}^{\nu} = 0. \]

(2.25)

To construct invariant actions, note that the product \(d^4x \det A \) is \(\Delta \) invariant,

\[d^4x' \det A'(x') = d^4x \det A(x), \]

(2.26)

and thus \(A_{\mu}^{\nu} \) can be viewed as a “vierbein”. It follows that the action

\[I = \int d^4x L(x) \]

(2.27)

with Lagrangian

\[L = \det A \mathcal{O}(\nabla a, \nabla \lambda, \nabla \bar{\lambda}) \]

(2.28)

and \(\mathcal{O} \) is any Lorentz singlet function is invariant under nonlinear SUSY as well as \(R \)-transformations. The leading terms in a derivative expansion of the Lagrangian are

\[L = -\frac{f_s^4}{2} \det A - \frac{f_a^2}{2} \det A \ D_\mu a D^\mu a. \]

(2.29)

Here \(f_s \) is the SUSY breaking scale and \(f_a \) is the \(R \)-symmetry breaking scale. In general, these scales are independent. In the absence of the spontaneous \(R \) symmetry breaking and hence the \(R \) axion, this reduces to the Akulov-Volkov action [4], [11]. One can also include
a nonlinearly SUSY invariant but soft R-symmetry breaking mass term by modifying the Lagrangian to be of the form

$$
\mathcal{L} = -\frac{f_s^4}{2} \det A - \frac{f_a^2}{2} \det A D_\mu a D^\mu a - \frac{1}{2} m_a^2 f_a^2 \det A a^2. \tag{2.30}
$$

Note that \mathcal{L} can alternatively be written by defining a “metric”

$$
g^{\mu\nu} = A^{-1} \rho^{\mu} \eta^{\rho\sigma} A^{-1} \sigma^{\nu} = g^{\mu\nu} \tag{2.31}
$$

as

$$
\mathcal{L} = -\frac{f_s^4}{2} \sqrt{\det (-g)} - \frac{f_a^2}{2} \sqrt{\det (-g)} \partial_\mu a g^{\mu\nu} \partial_\nu a - \frac{1}{2} m_a^2 f_a^2 \sqrt{\det (-g)} a^2. \tag{2.32}
$$

Here $\eta^{\mu\nu}$ is the Minkowski space metric with signature $(-1, 1, 1, 1)$.

3. SYMMETRY CURRENTS

For any variations $\Delta x^\mu, \delta \phi^i$ (not just SUSY and R), one has

$$\delta \mathcal{L} = -\partial_\mu J^\mu_N + \sum_i \delta \phi^i \frac{\delta I}{\delta \phi^i}$$

(3.1)

where

$$J^\mu_N = -\sum_i \delta \phi^i \frac{\partial \mathcal{L}}{\partial \phi^i}$$

(3.2)

and the Euler-Lagrange derivative is

$$\frac{\delta I}{\delta \phi^i} = \frac{\partial \mathcal{L}}{\partial \phi^i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi^i}.$$

(3.3)

Using

$$\delta \mathcal{L} = \Delta \mathcal{L} - \Delta x^\mu \partial_\mu \mathcal{L} = -\partial_\mu [\Delta x^\mu \mathcal{L}] + \Delta \mathcal{L} + (\partial_\mu \Delta x^\mu) \mathcal{L}$$

(3.4)

and defining the Noether current

$$J^\mu = J^\mu_N - \Delta x^\mu \mathcal{L}$$

(3.5)

gives Noether’s theorem

$$\partial_\mu J^\mu = -\Delta \mathcal{L} - (\partial_\mu \Delta x^\mu) \mathcal{L} + \sum_i \delta \phi^i \frac{\delta I}{\delta \phi^i}.$$

(3.6)

The general current form can be rewritten using the canonical energy-momentum tensor

$$T^\mu_{\nu} = -\sum_i \partial_\nu \phi^i \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi^i} + \eta^\mu_{\nu} \mathcal{L}$$

(3.7)

as

$$J^\mu = -\sum_i \Delta \phi^i \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi^i} - \Delta x^\nu T^\mu_{\nu}.$$

(3.8)

For the model described by the Lagrangian of Eq. (2.30), the conserved canonical energy-momentum tensor is simply
\[T^{\mu \nu} = A^{-1} \nu^{\mu} \mathcal{L} + f_a^2 \det A \, D^\rho a A_p^{-1} \mu D_{\nu a} \] \hspace{1cm} (3.9)

and satisfies

\[\partial_\mu T^{\mu \nu} = \sum_i \partial_\nu \phi^i \frac{\delta I}{\delta \phi^i}. \] \hspace{1cm} (3.10)

Note that the energy-momentum tensor starts as a positive cosmological constant associated with the spontaneous SUSY breaking

\[<0|T^{00}|0> = \frac{f_a^4}{2}. \] \hspace{1cm} (3.11)

Using the Noether construction, it is straightforward to obtain the form of the supersymmetry and \(R \) currents along with their (non-) conservation laws [12]. The conserved supersymmetry currents are

\[Q^{\mu}(\xi, \bar{\xi}) = \xi^\alpha Q^{\mu}_\alpha + \bar{Q}^{\mu}_{\dot{\alpha}} \bar{\xi}^{\dot{\alpha}} \]
\[= 2T^{\mu \nu}(\xi, \bar{\xi}), \] \hspace{1cm} (3.12)

where

\[Q^{\mu}_\alpha = 2iT^{\mu \nu}(\sigma^\nu \bar{\lambda})_\alpha; \quad \bar{Q}^{\mu}_{\dot{\alpha}} = -2iT^{\mu \nu}(\lambda \sigma^\nu)_{\dot{\alpha}} \] \hspace{1cm} (3.13)

and satisfy

\[\partial_\mu Q^{\mu}(\xi, \bar{\xi}) = \sum_i \delta Q(\xi, \bar{\xi}) \phi_i \frac{\delta I}{\delta \phi^i}. \] \hspace{1cm} (3.14)

For the R-symmetry current, one extracts the current

\[R^{\mu} = f_a^2 \det A \, A^{\rho a}_p \mu D^\rho a - 2T^{\mu \nu}(\lambda \sigma^\nu \bar{\lambda}) \] \hspace{1cm} (3.15)

whose divergence

\[\partial_\mu R^{\mu} = m_a^2 f_a^2 \det A \, a + \frac{\delta I}{\delta a} + i(\lambda^\alpha \frac{\delta I}{\delta \lambda^\alpha} + \frac{\partial I}{\partial \lambda^\alpha} \bar{\lambda}^{\dot{\alpha}}) \] \hspace{1cm} (3.16)

displays the soft \(R \) symmetry breaking.

Note that
\[R^\mu = f_a \partial^\mu a + \ldots \]
\[Q_\alpha^\mu = if_s^2 (\sigma^\mu \bar{\lambda})_\alpha + \ldots \]
\[\bar{Q}_\dot{\alpha}^\mu = -if_s^2 (\lambdabar \sigma^\mu \dot{\dot{\lambda}}) + \ldots \]
\[T^{\mu\nu} = -\eta^{\mu\nu} f_s^4 + \ldots \]

(3.17)

so that \(R^\mu \) interpolates for the \(R \)-axion field \(a \), while the supersymmetry currents interpolate for the Goldstino fields \(\lambda_\alpha, \bar{\lambda}_{\dot{\alpha}} \).

In addition, \(\mathcal{L} \) also possesses a softly broken (by the \(R \)-axion mass term) shift symmetry [13] defined by

\[
\delta (\zeta) a = \zeta \\
\delta (\zeta) \lambda_\alpha = 0 \\
\delta (\zeta) \bar{\lambda}_{\dot{\alpha}} = 0 .
\]

(3.18)

The associated current and non-conservation equation are given by

\[j^\mu = f_a^2 \det A \Lambda^{-1} a \]

(3.19)

and

\[\partial_\mu j^\mu = m_a^2 f_a^2 \det A a + \frac{\delta S}{\delta a} .
\]

(3.20)

For the case of linearly realized supersymmetry, the various currents are components of a supercurrent [14]-[19] and are related via SUSY transformations. Under nonlinear supersymmetry, the currents transform as

\[
\delta Q(\xi, \bar{\xi}) R^\mu = i(\xi^\alpha Q_\alpha^\mu - \bar{Q}_\dot{\alpha}^\mu \xi^{\dot{\alpha}}) + \partial_\rho [\Lambda^\rho(\xi, \bar{\xi}) R^\mu - \Lambda^\mu(\xi, \bar{\xi}) R^\rho] + \Lambda^\mu(\xi, \bar{\xi}) \partial_\rho R^\rho \\
\delta Q(\xi, \bar{\xi}) Q_\alpha^\mu = 2i(\sigma^\nu \xi)_{\beta} T^\nu \alpha + \partial_\nu [\Lambda^\nu(\xi, \bar{\xi}) Q_\alpha^\mu - \Lambda^\mu(\xi, \bar{\xi}) Q_\alpha^\nu] + \Lambda^\mu(\xi, \bar{\xi}) \partial_\nu Q_\alpha^\nu \\
\delta Q(\xi, \bar{\xi}) \bar{Q}_{\dot{\alpha}}^\mu = -2i(\xi \sigma^\nu)_{\dot{\alpha}} T^\nu \alpha + \partial_\nu [\Lambda^\nu(\xi, \bar{\xi}) \bar{Q}_{\dot{\alpha}}^\mu - \Lambda^\mu(\xi, \bar{\xi}) \bar{Q}_{\dot{\alpha}}^\nu] + \Lambda^\mu(\xi, \bar{\xi}) \partial_\nu \bar{Q}_{\dot{\alpha}}^\nu \\
\delta Q(\xi, \bar{\xi}) T^\mu \nu = \partial_\rho [\Lambda^\rho(\xi, \bar{\xi}) T^\mu \nu - \Lambda^\mu(\xi, \bar{\xi}) T^\rho \nu] + \Lambda^\mu(\xi, \bar{\xi}) \partial_\rho T^\rho \nu.
\]

(3.21)

Note that the terms
\[\partial_\rho [\Lambda^\rho(\xi, \bar{\xi}) R^\mu - \Lambda^\rho(\xi, \bar{\xi}) R^\rho] \]
\[\partial_\nu [Q^\mu_\alpha \Lambda^\nu(\xi, \bar{\xi}) - Q^\nu_\alpha \Lambda^\mu(\xi, \bar{\xi})] \]
\[\partial_\nu [\bar{Q}^\mu_\dot{\alpha} \Lambda^\nu(\xi, \bar{\xi}) - \bar{Q}^\nu_\dot{\alpha} \Lambda^\mu(\xi, \bar{\xi})] \]
\[\partial_\rho [\Lambda^\rho(\xi, \bar{\xi}) T^{\mu\nu} - \Lambda^\rho(\xi, \bar{\xi}) T^{\rho\nu}] \] (3.22)

are simply Belinfante improvements each being algebraically divergenceless. They can be absorbed into defining improved currents.

Thus, under the nonlinear SUSY, \(R^\mu \) transforms into \(Q^\mu_\alpha, \bar{Q}^\mu_\dot{\alpha} \) and \(Q^\mu_\alpha, \bar{Q}^\mu_\dot{\alpha} \) transforms into \(T^{\mu\nu} \). This holds even though

(i) \(a \) and \(\lambda, \bar{\lambda} \) need not be SUSY partners in the underlying theory
(ii) the dynamics responsible for SUSY breaking and \(R \) breaking may have different origins
(iii) \(f_s \) need not equal \(f_a \).

Since they are related by SUSY transformations, there will be relations among \(R \) and SUSY current correlators. Moreover, since these currents interpolate for the \(R \)-axion and Goldstinos, the current correlator relations will translate into relations among Green functions (and S-matrix elements) containing \(R \)-axions and Goldstinos.

In closing this section, note that the softly broken \(R \)-axion shift symmetry current, \(j^\mu \), has the nonlinear SUSY transformation law

\[\delta_Q(\xi, \bar{\xi}) j^\mu = \partial_\rho [\Lambda^\rho(\xi, \bar{\xi}) j^\mu - \Lambda^\rho(\xi, \bar{\xi}) j^\rho] + \Lambda^\mu(\xi, \bar{\xi}) \partial_\rho j^\rho \] (3.23)

which is just a sum of the Belinfante improvement term and the divergence of \(j^\mu \) itself.
4. SUPERCONFORMAL VARIATIONS AND RELATIONS AMONG SYMMETRY BREAKINGS

For linear realizations of supersymmetry, not only are the R current, supersymmetry currents and the energy momentum tensor related by supersymmetry transformations, but the explicit breakings of the R and dilatation symmetries are related via SUSY transformations to the breaking of the superconformal symmetry. In this section, we examine the analog of this connection for nonlinear SUSY.

Our first step is to construct the intrinsic variations [20] of the R axion and Goldstino fields which satisfy the (graded) superconformal algebra [21], [22]

\[
\begin{align*}
[\delta_D, \delta_{M\mu\nu}] &= 0 ; & [\delta_D, \delta_{P\mu}] &= \delta_{P\mu} ; & [\delta_D, \delta_{K\mu}] &= -\delta_{K\mu} \\
[\delta_{M\mu\nu}, \delta_{K\rho}] &= \eta_{\mu\rho} \delta_{K\nu} - \eta_{\nu\rho} \delta_{K\mu} ; & [\delta_{P\mu}, \delta_{K\nu}] &= 2(\eta_{\mu\nu} \delta_D - \delta_{M\mu\nu}) ; & [\delta_{P\mu}, \delta_{K\nu}] &= 0 \\
[\delta_{K\mu}, \delta_R] &= 0 ; & [\delta_{K\mu}, \delta_{K\nu}] &= 0 ; & [\delta_D, \delta_R] &= 0 \\
[\delta_D, \delta_{Q\alpha}] &= \frac{1}{2} \delta_{Q\alpha} ; & [\delta_D, \bar{\delta}_{Q\dot{\alpha}}] &= \frac{1}{2} \bar{\delta}_{Q\dot{\alpha}} \\
[\delta_{K\mu}, \delta_{Q\alpha}] &= \sigma_{\mu\alpha\dot{\alpha}} \bar{\delta}_{\dot{\alpha}} ; & [\delta_{K\mu}, \bar{\delta}_{Q\dot{\alpha}}] &= \delta_{\dot{\alpha}} \sigma_{\mu\alpha} \\
[\delta_{M\mu\nu}, \delta_{S\alpha}] &= -\frac{1}{2} \sigma_{\mu\alpha}^\beta \delta_{S\beta} ; & [\delta_{M\mu\nu}, \bar{\delta}_{S\dot{\alpha}}] &= -\frac{i}{2} \bar{\sigma}_{\mu\alpha\dot{\alpha}} \bar{\delta}_{S\dot{\alpha}} \\
[\delta_{P\mu}, \delta_{S\alpha}] &= \sigma_{\mu\alpha\dot{\alpha}} \bar{\delta}_{\dot{\alpha}} ; & [\delta_{P\mu}, \bar{\delta}_{S\dot{\alpha}}] &= \delta_{\dot{\alpha}} \sigma_{\mu\alpha} \\
[\delta_R, \delta_{S\alpha}] &= i \delta_{S\alpha} ; & [\delta_R, \bar{\delta}_{S\dot{\alpha}}] &= -\bar{\delta}_{S\dot{\alpha}} \\
[\delta_D, \delta_{S\alpha}] &= -\frac{1}{2} \delta_{S\alpha} ; & [\delta_D, \bar{\delta}_{S\dot{\alpha}}] &= -\frac{1}{2} \bar{\delta}_{S\dot{\alpha}} \\
[\delta_{K\mu}, \delta_{S\alpha}] &= 0 ; & [\delta_{K\mu}, \bar{\delta}_{S\dot{\alpha}}] &= 0 \\
\{\delta_{S\alpha}, \bar{\delta}_{S\dot{\alpha}}\} &= -2i\sigma_{\alpha\dot{\alpha}}^\mu \delta_{K\mu} \\
\{\delta_{Q\alpha}, \delta_{S\beta}\} &= -(\sigma_{\alpha\beta}^{\mu\nu} \delta_{P\mu} + 2i\epsilon_{\alpha\beta\dot{\gamma}d} \delta_D + 3\epsilon_{\alpha\beta} \delta_R) \\
\{\delta_{Q\alpha}, \bar{\delta}_{S\dot{\alpha}}\} &= \bar{\sigma}_{\alpha\dot{\alpha}}^{\mu\nu} \delta_{\mu\nu} - 2i\epsilon_{\alpha\beta\dot{\gamma}d} \delta_D + 3\epsilon_{\alpha\beta} \delta_R \\
\{\delta_{Q\alpha}, \bar{\delta}_{S\dot{\alpha}}\} &= 0 ; & \{\delta_{S\alpha}, \delta_{Q\dot{\alpha}}\} &= 0 ; & \{\delta_{S\alpha}, \delta_{S\dot{\alpha}}\} &= 0 ; & \{\delta_{S\dot{\alpha}}, \bar{\delta}_{S\dot{\alpha}}\} &= 0
\end{align*}
\] (4.1)

where $\delta_{P\mu} = \partial_{\mu}, \delta_{M\mu\nu}, \delta_{K\mu}$ are the translation, angular momentum and special conformal variations respectively and $\delta_{S\alpha}, \bar{\delta}_{S\dot{\alpha}}$ are the superconformal variations. Note that the angular momentum variations also satisfy
\[[\delta_{M\mu\nu}, \delta_{M\lambda\rho}] = \eta_{\mu\lambda} \delta_{M\nu\rho} - \eta_{\mu\rho} \delta_{M\nu\lambda} - \eta_{\nu\lambda} \delta_{M\mu\rho} + \eta_{\nu\rho} \delta_{M\mu\lambda} \]

\[[\delta_{M\mu\nu}, \delta_{P\rho}] = \eta_{\mu\rho} \delta_{P\nu} - \eta_{\nu\rho} \delta_{P\mu} \; ; \; [\delta_{M\mu\nu}, \delta_{R}] = 0 \]

\[[\delta_{M\mu\nu}, \delta_{Q\alpha}] = -\frac{1}{2} \sigma_{\alpha}^{\mu\nu} \beta \delta_{Q\beta} \; ; \; [\delta_{M\mu\nu}, \bar{\delta}_{Q\dot{\alpha}}] = -\frac{1}{2} \bar{\sigma}_{\dot{\alpha}}^{\mu\nu} \dot{\beta} \bar{\delta}_{Q\dot{\beta}} \quad (4.2) \]

After some straightforward, but rather tedious algebra, the (intrinsic) superconformal variations of the Nambu-Goldstone fields are extracted as

\[\delta_{S\alpha} a = 3\lambda + (i(\sigma^\nu \bar{\sigma}^\mu \lambda)_{\alpha} x_\nu - 2\lambda_{\alpha}(\lambda \sigma^\mu \bar{\lambda})) \partial_{\mu} a \]

\[\delta_{S\alpha} \lambda^\beta = 4i\lambda^\alpha \lambda^\beta - (i(\sigma^\nu \bar{\sigma}^\mu \lambda)_{\alpha} x_\nu - 2\lambda_{\alpha}(\lambda \sigma^\mu \bar{\lambda})) \partial_{\mu} \lambda^\beta \]

\[\delta_{S\alpha} \bar{\lambda}^\dot{\beta} = -x^\nu \bar{\sigma}^\nu_{\alpha} - 2i\lambda^\alpha \bar{\lambda}^\dot{\beta} - (i(\sigma^\nu \bar{\sigma}^\mu \lambda)_{\alpha} x_\nu - 2\lambda_{\alpha}(\lambda \sigma^\mu \bar{\lambda})) \partial_{\mu} \bar{\lambda}^\dot{\beta} \quad (4.3) \]

\[\bar{\delta}_{S\dot{\alpha}} a = 3\bar{\lambda}^\dot{\alpha} - (i(\bar{\lambda} \sigma^\mu \sigma^\nu a)_{\dot{\alpha}} x_\nu - 2\bar{\lambda}_{\dot{\alpha}}(\lambda \sigma \bar{\lambda})) \partial_{\mu} a \]

\[\bar{\delta}_{S\dot{\alpha}} \lambda^\beta = x^\nu \bar{\sigma}^\nu_{\dot{\alpha}} + 2i\lambda^\dot{\alpha} \bar{\lambda}^\beta - (i(\bar{\lambda} \sigma^\mu \sigma^\nu a)_{\dot{\alpha}} x_\nu - 2\bar{\lambda}_{\dot{\alpha}}(\lambda \sigma^\mu \bar{\lambda})) \partial_{\mu} \lambda^\beta \]

\[\bar{\delta}_{S\dot{\alpha}} \bar{\lambda}^\dot{\beta} = -4i\bar{\lambda}^\dot{\alpha} \bar{\lambda}^\dot{\beta} - (i(\bar{\lambda} \sigma^\mu \sigma^\nu a)_{\dot{\alpha}} x_\nu - 2\bar{\lambda}_{\dot{\alpha}}(\lambda \sigma^\mu \bar{\lambda})) \partial_{\mu} \bar{\lambda}^\dot{\beta} \quad (4.4) \]

Notice that the superconformal symmetries are also spontaneously broken, but the associated Nambu-Goldstone fermions, \(\lambda^\alpha_S \), \(\bar{\lambda}^\dot{\alpha}_S \) are not independent degrees of freedom. Rather, one finds that

\[\lambda^\alpha_S = -\frac{1}{4}(\sigma^\mu \partial_{\mu} \bar{\lambda})^\alpha + ... \]

\[\bar{\lambda}^\dot{\alpha}_S = -\frac{1}{4}(\partial_{\mu} \lambda \sigma^\mu)^\dot{\alpha} + ... \quad (4.5) \]

so that

\[\delta_{S\alpha} \lambda^\beta_S = \delta_{\alpha}^\beta + ... \; ; \; \bar{\delta}_{S\dot{\alpha}} \bar{\lambda}^\dot{\beta}_S = -\bar{\delta}_{\dot{\alpha}}^\dot{\beta} + ... \quad (4.6) \]

The fact that there can be spontaneously broken spacetime symmetries without independent Nambu-Goldstone fields is not in conflict with Goldstone’s theorem [23] which guarantees an independent Nambu-Goldstone field for every spontaneously broken global symmetry [24]-[28].

For the dilatation variations, one finds
\[\delta_D a = x^\mu \partial_\mu a \]
\[\delta_D \lambda^\alpha = \left(-\frac{1}{2} + x^\mu \partial_\mu\right)\lambda^\alpha \]
\[\delta_D \bar{\lambda}^{\dot{\alpha}} = \left(-\frac{1}{2} + x^\mu \partial_\mu\right)\bar{\lambda}^{\dot{\alpha}}, \quad (\text{4.7}) \]

which corresponds to a linear representation.

Recalling that the intrinsic and total variations are related as

\[\delta \phi^i = \Delta \phi^i - \Delta x^\mu \partial_\mu \phi^i, \quad (\text{4.8}) \]

we extract the total (\Delta) scale variations corresponding to the spacetime scaling

\[\Delta_D x^\mu = -x^\mu \] as

\[\Delta_D a = 0 ; \quad \Delta_D \lambda^\alpha = -\frac{1}{2} \lambda^\alpha ; \quad \Delta_D \bar{\lambda}^{\dot{\alpha}} = -\frac{1}{2} \bar{\lambda}^{\dot{\alpha}} \quad (\text{4.9}) \]

which fixes the scaling weights as

\[d_a = 0 ; \quad d_\lambda = d_{\bar{\lambda}} = -\frac{1}{2} \quad (\text{4.10}) \]

It follows that

\[\Delta_D \mathcal{L} = -f_s^2 \det A \ D^\mu a D_\mu a. \quad (\text{4.11}) \]

In fact, the Nambu-Goldstone particle associated with any spontaneously broken symmetry
which commutes with the dilatation charge is constrained to have scaling weight zero [29].

With the variations in hand, the dilatation current is readily constructed as

\[\mathcal{D}^\mu = x^\nu T^\mu_{ \nu}. \quad (\text{4.12}) \]

Its divergence

\[\partial_\mu \mathcal{D}^\mu = T^\mu_{ \mu} + x^\nu \partial_\mu T^\mu_{ \nu} \]
\[= A_\mu \ T^\mu_{ \nu} + x^\nu \partial_\mu T^\mu_{ \nu} - \frac{1}{2} (\lambda^\alpha \frac{\delta I}{\delta \lambda^\alpha} - \frac{\delta I}{\delta \bar{\lambda}^{\dot{\alpha}}} \bar{\lambda}^{\dot{\alpha}}) \]
\[= \left[f_s \frac{\partial}{\partial f_s} + f_a \frac{\partial}{\partial f_a} + m_a \frac{\partial}{\partial m_a}\right] \mathcal{L} + \sum_i \delta_D \phi^i \frac{\delta I}{\delta \phi^i} \quad (\text{4.13}) \]
exhibits the explicit scale symmetry breaking. Note that there are independent breakings arising from the spontaneous SUSY breaking scale, f_s, the spontaneous R symmetry breaking scale, f_a, and the soft R symmetry breaking mass term, m_a. Under SUSY, the dilatation current transforms as

$$\delta Q(\xi, \bar{\xi}) D^\mu = -\frac{1}{2} Q^\mu(\xi, \bar{\xi}) + \partial_\rho [\Lambda^\rho(\xi, \bar{\xi}) D^\mu - \Lambda^\mu(\xi, \bar{\xi}) D^\rho]$$

$$+ \Lambda^\mu(\xi, \bar{\xi}) \partial_\rho D^\rho. \quad (4.14)$$

The special conformal intrinsic variations take the form

$$\delta K_\mu^a = -3 \lambda \sigma_\mu \bar{\lambda} + \left(\eta_\mu^\nu x^2 - 2 x^\nu x_\mu + \eta_\mu^\nu (\lambda \lambda)(\bar{\lambda} \bar{\lambda}) \right) \partial_\nu a$$

$$\delta K_\mu^\alpha = (x_\mu - 2i \lambda \sigma_\mu \bar{\lambda}) \lambda^\alpha - i x^\nu (\sigma_{\mu\nu} \lambda)^\alpha + \left(\eta_\mu^\nu x^2 - 2 x^\nu x_\mu + \eta_\mu^\nu (\lambda \lambda)(\bar{\lambda} \bar{\lambda}) \right) \partial_\nu \lambda^\alpha$$

$$\delta K_\mu^{\bar{\alpha}} = (x_\mu - 2i \lambda \sigma_\mu \bar{\lambda}) \bar{\lambda}^{\bar{\alpha}} - i x^\nu (\bar{\sigma}_{\mu\nu} \bar{\lambda})^{\bar{\alpha}} + \left(\eta_\mu^\nu x^2 - 2 x^\nu x_\mu + \eta_\mu^\nu (\lambda \lambda)(\bar{\lambda} \bar{\lambda}) \right) \partial_\nu \bar{\lambda}^{\bar{\alpha}} \quad (4.15)$$

while the associated special conformal total variations of the fields are

$$\Delta_{K_\mu^a} = -3 \lambda \sigma_\mu \bar{\lambda}$$

$$\Delta_{K_\mu^\alpha} = (x_\mu - 2i \lambda \sigma_\mu \bar{\lambda}) \lambda^\alpha - i x^\nu (\sigma_{\mu\nu} \lambda)^\alpha$$

$$\Delta_{K_\mu^{\bar{\alpha}}} = (x_\mu - 2i \lambda \sigma_\mu \bar{\lambda}) \bar{\lambda}^{\bar{\alpha}} - i x^\nu (\bar{\sigma}_{\mu\nu} \bar{\lambda})^{\bar{\alpha}} \quad (4.16)$$

while the spacetime point varies as

$$\Delta_{K_\mu^\nu} = -(\eta_\mu^\nu x^2 - 2 x_\mu x^\nu) - \eta_\mu^\nu (\lambda \lambda)(\bar{\lambda} \bar{\lambda})$$

$$\quad (4.17)$$

Note that realizing the supersymmetry nonlinearly requires that the special conformal transformations be nonlinearly realized. This is reminiscent of the situation which occurs in the coupling of gauge fields with nonlinearly realized SUSY. In that case, if one demands that the gauge field transforms as a nonlinear SUSY standard realization, then its gauge transformation is nonstandard [10]. Note, however, that neither the special conformal nor the dilatation symmetries are spontaneously broken in this realization.

From the intrinsic superconformal variations (c.f. Eqs. (4.3)-(4.4)), the total (\Delta) superconformal variations are immediately gleaned as
\[\Delta S_{a}a = 3\lambda_{a} ; \quad \bar{\Delta} S_{\dot{a}}a = 3\bar{\lambda}_{\dot{a}} \]
\[\Delta S_{a}\lambda^{\beta} = 4i\lambda^{a}\lambda^{\beta} ; \quad \bar{\Delta} S_{\dot{a}}\lambda^{\beta} = x_{\nu}^\mu \bar{\sigma}_{\nu}^{\dot{\alpha}} + 2i\bar{\lambda}^{\dot{a}}\lambda^{\beta} \]
\[\Delta S_{a}\bar{\lambda}^{\beta} = -x_{\nu}^\mu \bar{\sigma}_{\nu}^{\dot{a}} - 2i\lambda^{a}\bar{\lambda}^{\beta} ; \quad \bar{\Delta} S_{\dot{a}}\bar{\lambda}^{\beta} = -4i\bar{\lambda}^\dot{a}\bar{\lambda}^{\beta} \]
(4.18)

with the superconformal variations of the spacetime point given by

\[
\Delta S_{a}x^{\mu} = i(\sigma^{\nu}\bar{\sigma}_{\nu}\lambda_{a}) x_{\nu} - 2\lambda_{a}(\lambda\sigma^{\mu}\bar{\lambda}) \\
\bar{\Delta} S_{\dot{a}}x^{\mu} = -i(\bar{\lambda}\sigma_{\nu}^{\dot{a}}) x_{\nu} - 2\bar{\lambda}_{\dot{a}}(\lambda\sigma^{\mu}\bar{\lambda})
\]
(4.19)

The superconformal currents are now readily computed as

\[
S^{\mu}(\eta, \bar{\eta}) = \eta^{a}S_{a}^{\mu} + \bar{S}_{\dot{a}}^{\mu}\bar{\eta}^{\dot{a}} \\
= Q^{\mu}(\eta\bar{\sigma}_{\nu}x_{\nu}, \bar{\sigma}_{\nu}\eta x_{\nu}) + (\eta\lambda + \bar{\eta}\bar{\lambda})(2R^{\mu} + j^{\mu}) \\
= [(\bar{\eta}\bar{\sigma}^{\nu})^{a}Q_{\mu a} + \bar{Q}_{\mu \dot{a}}(\bar{\sigma}^{\nu}\eta)^{\dot{a}}] x_{\nu} + (\eta\lambda + \bar{\eta}\bar{\lambda})(2R^{\mu} + j^{\mu}) .
\]
(4.20)

Under nonlinear SUSY, the superconformal currents transform as

\[
\delta Q(\xi, \bar{\xi})S^{\mu}(\eta, \bar{\eta}) = 3(\eta\xi + \bar{\eta}\bar{\xi})R^{\mu} + 2i(\eta\xi - \bar{\eta}\bar{\xi})D^{\mu} \\
-(\xi\sigma^{\rho}\eta + \bar{\eta}\bar{\sigma}^{\rho}\bar{\xi})M^{\mu}_{\nu \rho} + \partial_{\nu}[\Lambda^{\rho}(\xi, \bar{\xi})S^{\mu}(\eta, \bar{\eta})] \\
-\Lambda^{\nu}(\xi, \bar{\xi})S^{\rho}(\eta, \bar{\eta}) + \Lambda^{\rho}(\xi, \bar{\xi})\partial_{\nu}S^{\nu}(\eta, \bar{\eta}) ,
\]
(4.21)

where the conserved angular momentum tensor is

\[
M^{\mu\nu\rho} = T^{\mu \nu \rho \omega} - T^{\mu \rho \omega \nu} - \frac{1}{2}[\lambda\sigma^{\lambda}\bar{\sigma}^{\nu \rho} \bar{\lambda} + \lambda\sigma^{\nu \rho}\sigma^{\lambda}\bar{\lambda}]T^{\mu}_{\lambda}
\]

and the angular momentum variations are

\[
\delta M_{\mu\nu\rho} = (x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})a \\
\delta M_{\mu\nu}\lambda^{a} = (x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})\lambda^{a} + \frac{i}{2}(\sigma_{\mu\nu}\lambda)^{a} \\
\delta M_{\mu\nu}\bar{\lambda}^{\dot{a}} = (x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})\bar{\lambda}^{\dot{a}} + \frac{i}{2}(\bar{\sigma}_{\mu\nu}\bar{\lambda})^{\dot{a}} .
\]
(4.22)

Taking the divergence of Eq. (4.21) yields

\[
\delta Q(\xi, \bar{\xi})\partial_{\mu}S^{\mu}(\eta, \bar{\eta}) = 3(\eta\xi + \bar{\eta}\bar{\xi})\partial_{\mu}R^{\mu} + 2i(\eta\xi - \bar{\eta}\bar{\xi})\partial_{\mu}D^{\mu}
\]
Thus the divergence of the R-symmetry current and the divergence of the dilatation current are tied to the divergence of the superconformal current through a nonlinear SUSY transformation. Since the divergences of these currents give the explicit breakings of these symmetries in the action, these breakings are also related via the nonlinear SUSY transformation.

This work was supported in part by the U.S. Department of Energy under grant DE-FG02-91ER40681A29 (Task B).
REFERENCES

[16] O. Piguet and K. Sibold, \emph{Renormalized Supersymmetry} (Birkhäuser, Boston, 1986) and references therein.

[28] For a discussion of the incompatibility of simultaneous spontaneous scale and SUSY breaking, see T.E. Clark and S.T. Love, \emph{Phys. Rev. D} \textbf{61}, 057902 (2000); hep-