Mass Spectrum and Decay Constants in the Continuum Limit

M. Gökelera, R. Horsleyb, V. Linkec, D. Pleiterc,d, P. E. L. Rakowa, G. Schierholzd,e, A. Schüllerf, P. Stephensong and H. Stübenh

aInstitut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
bInstitut für Physik, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
cInstitut für Theoretische Physik, Freie Universität Berlin, D-14195 Berlin, Germany
dDeutsches Elektronen-Synchrotron DESY and NIC, D-15735 Zeuthen, Germany
eDeutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
fInstitut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany
gDipartimento di Fisica, Università degli Studi di Pisa e INFN, Sezione di Pisa, 56100 Pisa, Italy
hKonrad-Zuse-Zentrum für Informationstechnik, D-14195 Berlin, Germany

We present first results for light hadron masses, quark masses and decay constants in the continuum limit using $O(a)$ improved fermions at three different values of the gauge coupling β.

1. INTRODUCTION

It has become standard to reduce, or indeed eliminate completely, the $O(a)$ cut-off effects of Wilson fermions by adding the local Sheikholeslami-Wohlert counterterm. The QCDSF collaboration has simulated quenched QCD with improved fermions at three different values of the gauge coupling $\beta = 6.0$, 6.2, and 6.4, which covers the range of lattice spacings $a^{-1} \approx 2 - 3.5$ GeV. The simulations have been done on lattices of size $16^3 \times 32$ ($\beta = 6.0$), $24^3 \times 48$ ($\beta = 6.0$, 6.2), $32^3 \times 64$ ($\beta = 6.2$), and $32^3 \times 48$ ($\beta = 6.4$). The spatial size of the lattices varies between 1.7 - 2.5 fm. We have generated $O(200-1000)$, $O(300)$, $O(100)$ gauge field configurations at $\beta = 6.0$, 6.2 and 6.4, respectively. They have been evaluated for 3-8 different values of the hopping parameter κ with m_π / m_p approximately in the range of 0.4 - 0.9.\footnote{Talk given by D. Pleiter at Lattice 98, Boulder, U.S.A.}\footnote{For more simulation details, see [1].}

2. CHIRAL EXTRAPOLATION

In order to extrapolate the masses and decay constants to the chiral limit, we use the phenomenological ansatz

$$m_X^2 = b_0 + b_1 m_\pi^2 + b_3 m_N^3.$$ (1)

Fits with only three parameters using this ansatz give smaller χ^2/dof than the ansatz based on predictions of chiral perturbation theory, e.g. for m_p and m_N \cite{3}. Fig. 1 shows m_π^2 and m_N^2 as a function of m_π^2 at $\beta = 6.2$. We have used a two parameter fit (keeping $b_3 = 0$ fixed) at $\beta = 6.4$, since we currently have results for three κ values only.

Searching for quenched chiral logarithms predicted by the chiral perturbation theory we
looked at the logarithm of the ratio m^2_π / m_q as function of the quark mass m_q. Since the standard method for determination of κ_c depends on the presence of these singularities, we use the quark masses determined by the Ward identity method. Using the ansatz \[\ln \left(\frac{am_\pi}{am_q} \right)^2 = c_0 - \frac{\delta}{1 + \delta} \ln(am_q) + c_1 am_q + c_2 (am_q)^2 \] we find $\delta \approx 0.1 - 0.2$ for $\beta = 6.0$ and 6.2. Our data and the fits are plotted in fig. 2.

3. HADRON MASSES

In fig. 3 we plot our results for the dimensionless mass ratio m_N/m_p versus $(m_{\pi}/m_p)^2$. Within errors there are no visible cut-off effects. For $\beta = 6.0$ and 6.2 we find the ratio m_N/m_p in the chiral limit to be in agreement with the experimental value.

We use a linear a^2 in order to extrapolate our results for the hadron masses to the continuum limit. We use the string tension K, which has cut-off errors of $O(a^2)$, to fix the scale and $\sqrt{K} = 427$MeV to express the experimental values in terms of \sqrt{K}. As shown in fig. 4 our preliminary data agrees with the experimental values. For the a_0 and b_1 mesons we find large $O(a^2)$ effects.

4. QUARK MASSES AND DECAY CONSTANTS

We define the bare quark mass using the Ward identity method. While the renormalization constant Z_A and the coefficient c_A are known non-perturbatively [2], we use tadpole improved values for $Z_A^{\overline{MS}}(am)$, b_A and b_P [1.6]. To determine m_s we proceed as described in [1] and use the physical pion and kaon masses as input.
To calculate the decay constants f_π and $1/f_\rho$ we use the improved renormalized operators $A_\mu = (1 + b_A am) Z_A (A_\mu + c_A \bar{a}_b P)$ and $V_\mu = (1 + b_V am) Z_V (V_\mu + ic_V \bar{a}_b T_{\mu \lambda})$. Z_A, b_A and c_A are known non-perturbatively [2]. While f_π scales very well, this is less obvious for $1/f_\rho$. For other matrix elements using improved axial and vector currents see [7].

ACKNOWLEDGEMENTS

The numerical calculations were performed on the Ape $QH2$ at DESY-Zeuthen and the Cray $T3D/T3E$ at ZIB, Berlin.

REFERENCES

7. R. Horsley, this conference.