Warped Reheating in Brane-Antibrane Inflation

N. Barnaby, C.P. Burgess, and J.M. Cline

1 Physics Department, McGill University, 3600 University Street
Montréal, Québec, Canada, H3A 2T8.
2 Department of Physics and Astronomy, McMaster University,
Hamilton, Ontario, Canada.
3 Perimeter Institute, Waterloo, Ontario, Canada.

Abstract: We examine how reheating occurs after brane-antibrane inflation in warped geometries, such as those which have recently been considered for Type IIB string vacua. We adopt the standard picture that the energy released by brane annihilation is dominantly dumped into massive bulk (closed-string) modes which eventually cascade down into massless particles, but argue that this need not mean that the result is mostly gravitons with negligible visible radiation on the Standard Model brane. We show that if the inflationary throat is not too strongly warped, and if the string coupling is sufficiently weak, then a significant fraction of the energy density from annihilation will be deposited on the Standard Model brane, even if it is separated from the inflationary throat by being in some more deeply warped throat. This is due to the exponential growth of the massive Kaluza-Klein wave functions toward the infrared ends of the throats. We argue that the possibility of this process removes a conceptual obstacle to the construction of multi-throat models, wherein inflation occurs in a different throat than the one in which the Standard Model brane resides. Such multi-throat models are desirable because they can help to reconcile the scale of inflation with the supersymmetry breaking scale on the Standard Model brane, and because they can allow cosmic strings to be sufficiently long-lived to be observable during the present epoch.
1. Introduction

There has been significant progress over the past years towards the construction of \emph{bona fide} string-theoretic models of inflation. The main progress over early string-inspired supergravity [1] and BPS-brane based [2] models has come due to the recognition that brane-antibrane [3, 4] and related [5, 6] systems can provide calculable mechanisms for identifying potentially inflationary potentials. Even better, they can suggest new observable signatures, such as the natural generation of cosmic strings by the brane-antibrane mechanism [3, 7]. The central problem to emerge from these early studies was to understand how the many string moduli get fixed, since such an understanding is a prerequisite for a complete inflationary scenario.

Recent developments are based on current progress in modulus stabilization within warped geometries with background fluxes for Type IIB vacua [8, 9, 10]. Both brane-antibrane inflation [11] and modulus inflation [12] have been embedded into this context, with an important role being played in each case by branes living in strongly-warped ‘throat-like’ regions within the extra dimensions. These inflationary scenarios have generated considerable activity [13, 14] because they open
up the possibility of asking in a more focused way how string theory might address the many issues which arise when building inflationary models. For instance, one can more fully compute the abundance and properties of any residual cosmic strings which might survive into the present epoch [16]. Similarly, the possibility of having quasi-realistic massless particle spectra in warped, fluxed Type IIB vacua [17] opens up the possibility of locating where the known elementary particles fit into the post-inflationary world [18], a prerequisite for any understanding of reheating and the subsequent emergence of the Hot Big Bang.

Even at the present preliminary level of understanding, a consistent phenomenological picture seems to require more complicated models involving more than a single throat (in addition to the orientifold images).\footnote{Two-throat models are also considered for reasons different than those given here in ref. [15].} This is mainly because for the single-throat models the success of inflation and particle-physics phenomenology place contradictory demands on the throat’s warping. They do so because the energy scale in the throat is typically required to be of order $M_i \sim 10^{15}$ GeV to obtain acceptably large temperature fluctuations in the CMB. But as was found in ref. [18], this scale tends to give too large a supersymmetry breaking scale for ordinary particles if the Standard Model (SM) brane resides in the same throat. This problem appears to be reasonably generic to the KKLT-type models discussed to date, because these models tend to have supersymmetric anti-de Sitter vacua until some sort of supersymmetry-breaking physics is added to lift the vacuum energy to zero. The problem is that the amount of supersymmetry-breaking required to zero the vacuum energy also implies so large a gravitino mass that it threatens to ruin the supersymmetric understanding of the low-energy electroweak hierarchy problem.

No general no-go theorem exists, however, and there does appear to be considerable room to try to address this issue through more clever model-building. Ref. [19] provides a first step in this direction within the the framework of ‘racetrack’ inflation [12]. Another possibility is a picture having two (or more) throats, with inflation arising because of brane-antibrane motion in one throat but with the Standard Model situated in the other (more about this proposal below). By separating the scales associated with the SM and inflationary branes in this way, it may be possible to reconcile the inflationary and supersymmetry-breaking scales with one another.

Besides possibly helping to resolve this problem of scales, multi-throat models could also help ensure that string defects formed at the end of inflation in the infla-
tionary throat have a chance of surviving into the present epoch and giving rise to new observable effects [16]. They are able to do so because if the Standard Model were on a brane within the same throat as the inflationary branes, these defects typically break up and disappear by intersecting with the SM brane.

At first sight, however, any multi-throat scenario seems likely to immediately founder on the rock of reheating.² Given the absence of direct couplings between the SM and inflationary branes, and the energy barrier produced by the warping of the bulk separating the two throats, one might expect the likely endpoint of brane-antibrane annihilation to be dump energy only into closed-string, bulk modes, such as gravitons, rather than visible degrees of freedom on our brane. In such a universe the energy which drove inflation could be converted almost entirely into gravitons, leaving our observable universe out in the cold.

It is the purpose of the present work to argue that this picture is too pessimistic, because strongly-warped geometries provide a generic mechanism for channelling the post-inflationary energy into massless modes localized on the throat having the strongest warping. They can do so because the massive bulk Kaluza-Klein (KK) modes produced by brane-antibrane annihilation prefer to decay into massless particles which are localized on branes within strongly-warped throats rather than to decay to massless bulk modes. As such, they open a window for obtaining acceptable reheating from brane-antibrane inflation, even if the inflationary and SM branes are well separated on different throats within the extra dimensions.

The remainder of the paper is organized as follows. In §2 we introduce a simple generalization of the Randall-Sundrum (RS) model [21] containing two AdS_5 throats with different warp factors, as a tractable model for the IKLMT inflationary scenario [11] with two throats. Here we recall the form of the KK graviton wave functions in the extra dimension. This is followed in §3 by an account of how the tachyonic fluid describing the unstable brane-antibrane decays into excited closed-string states, which quickly decay into KK gravitons. §4 Discusses the tunneling of the KK modes through the energy barrier which exists between the two throats because of the warped geometry. §5 Gives an estimate of the reheating temperature on the SM brane which results from the preferential decay of the KK gravitons into SM particles. Our conclusions are given in §6.

²See ref. [20] for a discussion of issues concerning brane-related reheating within other contexts.
2. Tale of Two Throats

We wish to describe reheating in a situation where brane-antibrane inflation occurs within an inflationary throat having an energy scale of M_i, due to the warp factor $a_i = M_i/M_p$, where M_p is the 4D Planck mass. This throat is assumed to be separated from other, more strongly warped, throats by a weakly warped Giddings-Kachru-Polchinski (GKP) manifold [8] whose volume is only moderately larger than the string scale, so $M_s \lesssim M_p$. In the simplest situation there are only two throats (plus their orientifold images), with the non-inflationary (Standard Model) throat having warp factor $a_{sm} \ll a_i$.

There are two natural choices for the SM warp factor, depending on whether or not the SM brane strongly breaks 4D supersymmetry. For instance, if the SM resides on an anti-D3 brane then supersymmetry is badly broken and the SM warp factor must describe the electroweak hierarchy à la Randall and Sundrum [21], with $a_{sm} \sim M_W/M_p \sim 10^{-16}$. Alternatively, if the SM resides on a D3 or D7 brane which preserves the bulk’s $N = 1$ supersymmetry in 4D, then SUSY breaking on the SM brane is naturally suppressed by powers of $1/M_p$ because it is only mediated by virtual effects involving other SUSY-breaking anti-D3 branes. In this case the electroweak hierarchy might instead be described by an intermediate-scale scenario [22], where $a_{sm} \sim M_{int}/M_p \sim (M_W/M_p)^{1/2} \sim 10^{-8}$.

A potential problem arises with the low-energy field theory approximation if $a_{sm} < a_i^2$, because in this case the string scale in the SM throat, $M_{sm} \sim a_{sm} M_p$, is smaller than the inflationary Hubble scale $H_i \sim M_i^2/M_p \sim a_i^2 M_p$ [23]. In this case string physics is expected to become important in the SM throat, and stringy corrections may change the low-energy description. The intermediate scale, where $a_{sm} \gtrsim a_i^2$, is more attractive from this point of view, since for it the field-theory approximation may be justified.

To proceed we use the fact that within the GKP compactification the geometry within the throat is well approximated by

$$ds^2 = a^2(y)(dt^2 - dx^2) - dy^2 - y^2 d\Omega_5^2,$$ \hspace{1cm} (2.1)

where y represents the proper distance along the throat, $a(y) = e^{-k|y|}$ is the throat’s warp factor and $d\Omega_5^2$ is the metric on the base space of the corresponding conifold singularity of the underlying Calabi-Yau space [24]. Of most interest is the 5D
metric built from the observable 4 dimensions and \(y \), which is well approximated by the metric of 5-dimensional anti-de Sitter space.

A simple model of the two-throat situation then consists of placing inflationary brane-antibranes in a throat at \(y = -y_i \) and putting the Standard Model brane at \(y = +y_{sm} \), as is illustrated in Fig. 1. Our analysis of this geometry follows the spirit of ref. [25]. Since most of the interest is in the throats, we simplify the description of the intervening bulk geometry by replacing them with a Planck brane at \(y = 0 \), with the resulting discontinuity in the derivative of \(a(y) \) chosen to reproduce the smoother (but otherwise similar) change due to the weakly-warped bulk. This approximation is illustrated in Fig. 2, with the smooth dashed curve representing the warp factor in the real bulk geometry and the solid spiked curve representing the result using an intervening Planck brane instead.

Of particular interest in what follows are the massive Kaluza-Klein modes in the bulk, since these are arguably the most abundantly-produced modes after brane-antibrane annihilation. For instance, focussing on the 5 dimensions which resemble AdS space in the throat, a representative set of metric fluctuations can be parameterized as \(h(x, y) \) in the line element,

\[
ds^2 = a^2(y)(dt^2 - dx^2 + h_{\mu\nu}dx^\mu dx^\nu) - dy^2.\tag{2.2}
\]

Figure 1: A Type IIB vacuum with a mildly warped inflationary throat and a strongly warped Standard Model throat. This diagram suppresses any image throats arising due to any orientifolds which appear in the compactification.

Figure 2: The warp factor as function of a bulk radial coordinate in a simplified model of two asymmetric throats. As shown in the figure, the part of the internal space outside of the throats can be regarded as a regularization of a ‘Planck’ brane of a Randall-Sundrum geometry.
In the static AdS background, the KK modes have spatial wavefunctions of the form

\[h(x, y) = \sum_n \phi_n(y) e^{ip \cdot x} \]

(2.3)

with \(p \cdot x = -E_n t + p \cdot x \), and \(\phi_n(y) \) satisfying the equation of motion

\[-\frac{d}{dy} \left(e^{-4k|y|} \frac{d\phi_n}{dy} \right) = m_n^2 e^{-2k|y|} \phi_n. \]

(2.4)

Here \(m_n^2 = p \cdot p \) is the mode’s 4D mass as viewed by brane-bound observers.

Exact solutions for \(\phi_n(y) \) are possible in the Planck-brane approximation [21, 25, 26], and are linear combinations of Bessel functions times an exponential

\[\phi_n(y) = N_n e^{2k|y|} \left[J_2 \left(\frac{m_n}{k} e^{k|y|} \right) + b_n Y_2 \left(\frac{m_n}{k} e^{k|y|} \right) \right] \]

(2.5)

where, for low lying KK modes \((m_n \ll k)\) one has

\[b_n \approx \frac{\pi m_n^2}{4k^2} \]

(2.6)

while for heavy KK modes \((m_n/k \approx 1)\) one has

\[b_n \approx -0.47 + 1.04 \left(\frac{m_n}{k} \right). \]

(2.7)

\(N_n \) is determined by the orthonormality condition, which ensures that the kinetic terms of the KK modes are independent of \(a_{sm} \):

\[\int_{-y_i}^{y_{sm}} dy e^{-2k|y|} \phi_n \phi_m = \delta_{nm}. \]

(2.8)

These wavefunctions are graphed schematically in Fig. 3.

For strongly-warped throats it is the exponential dependence which is most important for the KK modes. Because of the exponential arguments of the Bessel functions in eq. (2.5), the presence of the Bessel functions modifies the large-\(y \) behaviour slightly. Due to the asymptotic forms \(J_2(z) \propto z^{-1/2} \) for large \(|z|\), and similarly for \(Y_2(z) \), we see that \(\phi_n(y) \sim e^{3k|y|/2} \) for \(m_n e^{k|y|} \gg k \). It is only this behaviour which we follow from here on. Taking the most warping to occur in the SM throat we find that \(m_n \) is approximately quantized in units of \(M_{sm} \equiv a_{sm} M_p \), which is either of order \(M_W \sim 10^3 \) GeV or \(M_{int} \sim 10^{10} \) GeV depending on whether or not supersymmetry breaks on the SM brane. Keeping only the exponentials we find that orthonormality requires

\[N_n^{-2} \sim \int_{-y_i}^{y_{sm}} dy e^{-2ky} \left(e^{3k|y|/2} \right)^2 \sim (k a_{sm})^{-1}, \]

(2.9)

and so

\[\phi_n(y) \sim (a_{sm} k)^{1/2} e^{3k|y|/2}, \]

(2.9)
showing that these modes are strongly peaked deep within the throat. This is intuitively easy to understand, since being localized near the most highly-warped region allows them to minimize their energy most effectively.

Thus, even the most energetic KK modes still have exponentially larger wave functions on the TeV brane, with the more energetic modes reaching the asymptotic region for smaller y. This is illustrated in Figure 4, which shows $\ln |\phi_n(y)|$ versus y in the representative case of a throat having warp factor $a = e^{-10}$, for a series of KK states with masses going as high as $M_p (n = 20,000)$. As the figure shows, the wave functions grow exponentially toward the TeV brane, with the onset of the asymptotic exponential form setting in earlier for larger mode number.3 This behaviour is central to the estimates which follow.

Among the KK modes it is the zero modes which are the exceptional case because their wavefunction is constant, $\phi_0 \sim \sqrt{k}$, and so they are not exponentially peaked inside the throat. It is the strong exponential peaking of the lightest massive KK modes relative to the massless modes which is central to the reheating arguments which follow.

![Figure 3: Wave functions of KK gravitons on the internal space.](image1)

![Figure 4: Unnormalized wave functions for highly excited KK gravitons with KK numbers $n = 1, 100, 1000$ and 20,000.](image2)

In our simplified model, the presence of two throats is not much more complicated than the original RS model. Mathematically it is the same, except that RS identified the two sides $y \leftrightarrow -y$ through orbifolding. Instead we interpret them as two separate throats with different depths defined by the brane locations $-y_i$ and $+y_{sm}$. One can imagine doubling this entire system on S_1 and orbifolding as shown in Fig. 5, to define the boundary conditions on the metric and its perturbations at the infrared branes. In this figure, the orbifold identification acts horizontally so that the inflation and SM branes are distinct fixed points.

3For the lowest-lying modes having the smallest nonzero masses it can happen that the asymptotic form of the Bessel functions is not yet reached even when $y = y_{sm}$, in which case the exponential peaking is slightly stronger than discussed above.
3. Brane-Antibrane Annihilation

In brane-antibrane inflation the energy released during reheating is provided by the tensions of the annihilating branes. Although this annihilation process is not yet completely understood, present understanding indicates that the energy released passes through an intermediate stage involving very highly-excited string states, before generically being transferred into massless closed-string modes. The time frame for this process is expected to be the local string scale.

For instance many of the features of brane-antibrane annihilation are believed to be captured by the dynamics of the open-string tachyon which emerges for small separations for those strings that stretch between the annihilating branes.\(^4\) In flat space and at zero string coupling \((g_s = 0)\), the annihilation instability has been argued to be described by the following tachyon Lagrangian [28]

\[
L_T = -2\tau_0 e^{-|T|^2/l_s^2} \sqrt{1 - |\partial_\mu T|^2}
\]

(3.1)

where \(T\) is the complex tachyon field, \(\tau_0\) is the tension of either of the branes, and \(l_s\) is the string length scale. During inflation, when the brane and anti-brane are well separated, \(\dot{T} = 0\) and the pressure of the system \(p_i\) is simply the negative of the tension of the two branes, \(p_i = -\rho_i\), while afterward \(\dot{T} \to 1\) and \(p_i \to 0\). In this description the pressureless tachyonic fluid would dominate the energy density of the universe and lead to no reheating whatsoever.

However, for nonvanishing \(g_s\), the time evolution of the tachyon fluid instead very quickly generates highly excited closed-string states [29, 30]. For \(Dp\) systems with \(p > 2\) the rate of closed string production in this process is formally finite, whereas it diverges for \(p \leq 2\) (and so passes beyond the domain of validity of the calculation). This divergence is interpreted to mean that for branes with \(p \leq 2\) all of the energy liberated from the initial brane tensions goes very efficiently into closed string modes.

\(^4\)See, however, ref. [27] for a discussion of an alternative mechanism for which the relevant highly-excited strings are open strings, but for which the annihilation energy nonetheless eventually ends up in massless closed string modes.
For spatially homogeneous branes with $p > 2$ the conversion is less efficient and so can be dominated by other, faster processes. In particular, it is believed that these higher-dimensional branes will decay more efficiently inhomogeneously, since they can then take advantage of the more efficient channels which are available to the lower-dimensional branes. For example a D3 brane could be regarded as a collection of densely packed but smeared-out D0 branes, each of which decays very efficiently into closed strings. Since the decay time is of order the local string scale, $l_s = 1/M_s$, the causally-connected regions in this kind of decay are only of order l_s in size, and so have a total energy of order the brane tension times the string volume, $\tau_0 l_s^3 \sim M_s/g_s$.

These flat-space calculations also provide the distribution of closed-string states as a function of their energy. The energy density deposited by annihilating D3-branes into any given string level is of order M_s^4, and so due to the exponentially large density of excited string states the total energy density produced is dominated by the most highly-excited states into which decays are possible. Since the available energy density goes like $1/g_s$ the typical closed-string state produced turns out to have a mass of order M_s/g_s, corresponding to string mode numbers of order $N \sim 1/g_s$.

On the other hand, the momentum transverse to the decaying branes for these states turns out to be relatively small, $p_T \sim M_s/\sqrt{g_s}$ [29, 30], and so the most abundantly produced closed-string states are nonrelativistic.

How do these flat-space conclusions generalize to the warped Type IIB geometries which arise in string inflationary models? If the annihilating 3-branes are localized in the inflationary throat, then the tension of the annihilating branes is of order $\tau_0 \sim (a_i M_s)^4/e^{\phi_i}$, where ϕ_i denotes the value taken by the dilaton field at the throat’s tip. The highly-excited closed-string states that are produced in this way live in the bulk, with the energy density produced being dominated by those whose masses are of order $a_i M_s/e^{\phi_i}$. Once produced, these closed-string bulk modes decay down to lower energies and, as might be expected from phase space arguments, most of them typically drop down to massless string states very quickly. An important exception to this would arise for those states carrying the most angular momentum at any given string mass level, since these must cascade more slowly down to lower energies in order to lose their angular momentum [31]. However these seem unlikely to be produced in appreciable numbers by brane-antibrane annihilation.

We are led in this way to expect that the annihilation energy is distributed relatively quickly amongst massless string states, or equivalently to KK modes of
the higher-dimensional supergravity which describes these states. Although the
initial massive string modes would be nonrelativistic, with \(M \sim a_i M_s/e^{\phi_i} \) and
\(p_r \sim a_i M_s/e^{\phi_i/2} \), the same need not be true for the secondary string states produced
by their decay, whose masses are now of order the KK mass scales. Consequently
these states may be expected not to remain localized in the inflationary throat, and
so if the extra dimensions are not too large compared with the string scale these
modes would have time to move to the vicinity of the SM throat before decaying
further. Once there, they would be free to fall into the potential wells formed by the
throats as their energy is lost by subsequent decays into lower-energy levels.

This physical picture is supported by the exponential peaking of the KK-mode
wave-functions in the most deeply-warped throats. In order to estimate the efficiency
with which energy can be transferred amongst KK modes, we can use the approximate
behavior of the wave functions given in the previous section to keep track of
powers of the throat’s warp factor, \(a_{sm} \). For instance, consider the trilinear vertex
among 3 KK states having mode numbers \(n_1, n_2 \) and \(n_3 \) which is obtained by dimen-
sionally reducing the higher-dimensional Einstein-Hilbert action, \(\sqrt{g}R \). Keeping in
mind that \(\sqrt{g}g^{\mu \nu} \propto a^2 \) and that \(\psi_n \propto a_{sm}^{1/2}/a^{3/2} \) for the nonzero modes (eq. (2.9)),
we find that the trilinear vertex involving \(0 \leq r \leq 3 \) massive KK modes (and \(3 - r \)
massless KK modes) has the following representative estimate

\[
L_{int} \sim \int_{-y_i}^{y_{sm}} dy \sqrt{g} g^{\mu \nu} g^{\alpha \beta} g^{\rho \delta} h_{\alpha \mu} h_{\sigma \rho} h_{\lambda \delta}
\]

\[
\sim \int_{-y_i}^{y_{sm}} dy \ e^{-2k|y|} \eta^{\mu \nu} \psi_{n_1} (x, y) \partial_\mu \psi_{n_2} (x, y) \partial_\nu \psi_{n_3} (x, y)
\]

\[
\sim \psi_{n_1} (x) \psi_{n_2} (x) \psi_{n_3} (x) p_2 \cdot p_3 \ a_{sm}^{r/2} \int_{-y_i}^{y_{sm}} dy e^{-2k|y|} (e^{3k|y|/2})^r
\]

\[
\sim \psi_{n_1} (x) \psi_{n_2} (x) \psi_{n_3} (x) \left(\frac{P_2 \cdot P_3}{k} \right) a_{sm}^\eta \] \quad (3.2)

where

\[
\eta = 2 - r \quad \text{if} \quad r \geq 2, \quad \text{and} \quad \eta = \frac{r}{2} \quad \text{if} \quad r = 0, 1. \quad (3.3)
\]

Notice for this estimate that since derivatives in the compactified directions are pro-
portional to \(g^{mn} \) rather than \(g^{\mu \nu} \), they suffer from additional suppression by powers
of \(a = e^{-ky} \) within the throat. Here \(m, n \) label the internal directions perpendicular
to the large 3 + 1-dimensional Minkowski space.

Thus a trilinear interaction amongst generic KK modes \((r = 3) \), even those with
very large \(n \), is proportional to \(1/(a_{sm} k) \sim 1/M_{sm} \), and so is only suppressed by
inverse powers of the low scale. Similarly, $r = 2$ processes involving two massive KK modes B and B', and one massless bulk mode ZM — such as the reaction $B \to B' + ZM$ — are $\propto 1/k \sim 1/M_p$ and so have the strength of 4D gravity inasmuch as they are Planck suppressed. The same is also true of the $r = 0$ couplings which purely couple the zero modes amongst themselves.\footnote{The appendix shows that this agrees with the size of the couplings found in the effective 4D supergravity lagrangian which describes the zero-mode and brane couplings.} Finally, those couplings involving only a single low-lying massive mode and two zero modes ($r = 1$) — such as for $B \to ZM + ZM'$ — are proportional to $a_{sm}^{1/2}/k \sim (M_{sm}/M_p^3)^{1/2}$ and so are even weaker than Planck-suppressed.

Similar estimates may also be made for the couplings of the generic and the massless KK modes to degrees of freedom on a brane sitting deep within the most strongly-warped throat. Using the expressions $\phi_0(y_{sm}) \sim 1$ and $\phi_n(y_{sm}) \sim 1/a_{sm}$ for massless and massive KK modes respectively, this gives:

$$\mathcal{L}_i = M_p^{-1} \left(h^{(0)\mu\nu}_0 \phi_0(y_{sm}) + \sum_n h^{(n)\mu\nu}_n \phi_n(y_{sm}) \right) T_{sm}^{\mu\nu}
\sim \left(\frac{h^{(0)\mu\nu}_0}{M_p} + \sum_n \frac{h^{(n)\mu\nu}_n}{M_{sm}} \right) T_{sm}^{\mu\nu}. \quad (3.4)$$

We see here the standard Planck-suppressed couplings of the massless modes (such as the graviton) as compared with the $O(1/M_{sm})$ couplings of the massive KK modes.

The picture which emerges is one for which the energy released by brane-antibrane annihilation ends up distributed among the massive KK modes of the massless string states. Because the wavefunctions of these modes tend to pile up at the tip of the most warped (SM) throat, their couplings amongst themselves — and their couplings with states localized on branes in this throat — are set by the low scale M_{sm} rather than by M_p. Furthermore, because the $O(1/M_{sm})$ couplings to the massless modes on the SM branes are much stronger than the Planck-suppressed couplings to the massless bulk modes, we see that the ultimate decay of these massive KK modes is likely to be into brane states. If it were not for the issue of tunneling, which we consider below, the final production of massless KK zero modes would be highly suppressed. Although we make the argument here for gravitons, the same warp-counting applies equally well to the other fields describing the massless closed-string sector.

In summary, we see that strong warping can provide a mechanism for dumping much of the energy released by the decay of the unstable brane-antibrane system.
into massless modes localized on branes localized at the most strongly-warped throat, regardless of whether the initial brane-antibrane annihilation is located in this throat. It does so because the primary daughter states produced by the decaying brane-antibrane system are expected to be very energetic closed strings, which in turn rapidly decay into massive KK modes of the massless string levels. The strong warping then generically channels the decay energy into massless modes which are localized within the most strongly-warped throats, rather than into massless bulk modes.

4. Tunneling

However the above arguments are too naive, since they ignore the fact that there is an energy barrier which the initial KK gravitons must tunnel through in order to reach the Standard Model throat. The efficiency of reheating on the SM brane will be suppressed by the tunneling probability.

The tunneling amplitude for a KK mode with energy E_n, in a Randall-Sundrum-like two-throat model just like ours, has been computed exactly in [25]:

$$\mathcal{A} \sim a_{\text{inf}}^2 \left(\frac{E_n}{M_i} \right)^2$$ \hspace{1cm} (4.1)

where M_i is the characteristic energy scale at the bottom of the inflation throat, out of which the particle is tunneling. Intuitively, this can be understood in the following way. For a mode with minimum (but nonzero) energy, the tunneling amplitude is given by the ratio of its wave function at the bottom of the throat to that at the top:

$$\mathcal{A} \sim \frac{\phi_n(y_{\text{inf}})}{\phi_n(0)} \sim a_{\text{inf}}^2$$ \hspace{1cm} (4.2)

Since energies in the throat scale linearly with the warp factor, a high-energy mode, with energy E_n, should have the larger tunneling amplitude given by (4.1). In the present case, the highest KK modes have energies determined by the tension of a D0-brane (as argued above); but we must remember that it is the warped tension which counts, so the maximum energy scale is given by $E_n \sim a_{\text{inf}} M_s / g_s$ whereas the characteristic energy scale in the throat is $M_i \sim a_{\text{inf}} M_s$. The tunneling probability is therefore

$$P = \mathcal{A}^2 = \left(\frac{a_{\text{inf}}}{g_s} \right)^4$$ \hspace{1cm} (4.3)
To maximize this, we need a high scale of inflation (so that the inflationary warp factor is not too small) and a small string coupling. Optimistically, we could imagine that inflation is taking place near the GUT scale, 10^{16} GeV, which saturates the bound on the inflation scale coming from gravitational waves contributing to the CMB anisotropy, and $g_s = 0.01$. Then $a_{inf} = 10^{-3}$ and the tunneling probability is $P = 10^{-4}$.

With a small tunneling probability P, the universe immediately after reheating would be dominated by massless gravitons, the final decay product of KK gravitons confined to the inflation throat. Only the small fraction P of the original false vacuum energy density which tunneled into the SM throat would efficiently decay into ultimately visible matter on the SM brane. Such a distribution of energy density would be strongly ruled out by big bang nucleosynthesis were it to persist down to low temperatures. There are several natural ways in which this outcome can be avoided however. Since reheating occurs at a high scale (given that P is not too small, as we shall quantify in the next section), the number of effectively massless degrees of freedom $N(T_{rh})$ could be quite large at the temperature of reheating. As the heavier of these species go out of equilibrium, they transfer their entropy into the lighter visible sector particles, resulting in a relative enhancement factor $N(T_{rh})/N(T_{nuc})$ of the entropy in visible radiation at the nucleosynthesis temperature T_{nuc}. On the other hand the entropy density in gravitons remains fixed because they were already thermally decoupled from the moment they were produced. If this is the only mechanism for diluting gravitons, we would require $P N(T_{rh})/N(T_{nuc}) \gtrsim 10$, so that gravitons make up no more than 10% of the total energy density at BBN.

Additionally, gravitons can be efficiently diluted if any heavy particles decay out of equilibrium at a temperature T_{dec} before BBN, so that they come to dominate the energy density during a significant interval. In this case the gravitons are diluted by an additional factor of T_{dec}/M by decaying particles of mass M. Similarly, a period of domination by coherent oscillations of a scalar field (for example a flat direction with a large initial VEV, that gets lifted during a phase transition) will behave as though matter-dominated, and give the same kind of dilution.

There is one more criterion which must be satisfied in order for tunneling to be significant: the lifetime of the heaviest KK states should be of the same order as or longer than the typical tunneling time. The typical momentum of the KK modes is

6We thank Andrei Linde for pointing out this possibility.
of order $M_i/\sqrt{g_s}$, hence the velocity transverse to the decaying brane is of order $\sqrt{g_s}$ [29], and the length of the throat is of order $R = cM_i^{-1}$ where $c \gtrsim 10$ in order to have a reliable low-energy description of the inflationary dynamics. Thus the tunneling time is

$$\tau_t \gtrsim 10^{M_i^{-1}} \sqrt{g_s} P^{-1}$$

while the lifetime of a KK mode is estimated to be

$$\tau_l \sim \left(g_s^2 M_i \over g_s \right)^{-1}$$

where the factor of g_s^2 comes from the squared amplitude for the two-body decay and M_i/g_s is the phase space. This translates into the requirement $10^{g_s^{9/2}} < a_{\text{inf}}^3$. To satisfy this, we need to take a string coupling which is somewhat smaller than 0.01, say $g_s = 0.006$. The bound is then saturated for an inflationary warp factor of $a_{\text{inf}} = 10^{-3}$. In this case the tunneling probability is 8×10^{-4}.

It would be interesting if there exist warped compactifications in which the background dilaton field is varying between the two throats. In this case it may be possible to have a smaller string coupling in the inflation throat, as would be desirable for the tunneling problem, while keeping the string coupling in the SM throat at a phenomenologically preferred value.

It is worth emphasizing that even when the tunneling probability for energetic KK modes is large enough for reheating, the lifetime of cosmic strings in the inflation throat is still cosmologically large. Copeland et al. [16] estimate the barrier penetration amplitude for a string to be

$$e^{-1/a_{\text{inf}}^2} \sim e^{-10^6}$$

which makes the strings stable on cosmological time scales.

5. Warped Reheating

From the previous sections we see that the endpoint of brane-antibrane inflation can be considered as a gas of nonrelativistic closed strings with mass M_i/g_s, density M_i^3 and decay rate $\Gamma \sim g_s M_i$, localized in the inflationary throat. These heavy states cascade down to massless gravitons through a sequence of KK gravitons, a fraction P (eq. 4.3) of which tunnel to the SM brane and decay into visible sector particle.
Initially there will be two relevant reheat temperatures: one for the massless gravitons, T_{grav} and one for the visible sector, T_{vis}. By the standard reheating estimate [33] we see that

$$T_{\text{grav}} \sim 0.1 (\Gamma M_p)^{1/2} \sim 0.1 a_i^{1/2} \sqrt{M_s M_p} \sim 10^{-3} M_p ,$$

(5.1)

where the last estimate uses $a_i \sim 10^{-3}$ and $M_s \sim M_p/10$. On the other hand, since a fraction P of the false vacuum energy was converted to visible sector particles, we deduce that

$$T_{\text{vis}} = P^{1/4} T_{\text{grav}} \sim T_{\text{grav}}/10$$

(5.2)

using the optimistic estimate of the previous section for P. This estimate is high enough to avoid potential problems to which a low reheat temperature can give rise. One should take this result with a grain of salt since it is marginally larger than both M_i and M_{sm}, and because it is larger than the string scale in the throats it invalidates the 4D field-theoretic calculation on which it is based. A more careful calculation must instead be based on a higher-dimensional, string-theoretic estimate of the energy loss, which goes beyond the scope of this article.

In conventional inflation models, such a high reheating temperature would be in conflict with the gravitino bound (overproduction of gravitinos, whose late decays disrupt big bang nucleosynthesis). It is interesting in this regard that the KKLT scenario gives a very large gravitino mass, around $m_{3/2} = 6 \times 10^{10}$ GeV [19], which is so large that there is effectively no upper limit on the reheat temperature (see for instance ref. [41]). The disadvantage of such a large gravitino mass is that supersymmetry is broken at too high a scale to explain the weak scale of the SM. If SUSY is this badly broken, one possibility for explaining the weak hierarchy is that the large landscape of string vacua provides a finely-tuned Higgs mass, as well as cosmological constant, as has been suggested in ref. [42]. If this is the case, then the degree of warping in the SM model brane would not be crucial for determining the TeV scale, and the existence of an extra throat to contain the SM model brane would be unnecessary. However, given the large number of 3-cycles in a typical Calabi-Yau manifold, each of which can carry nontrivial fluxes, the existence of many throats should be quite generic, and it would not be surprising to find the SM brane in a different throat from the inflationary one.
6. Conclusions

We have argued that for brane-antibrane inflation in strongly-warped extra-dimensional vacua — such as have been considered in detail for Type IIB string models — there is a natural mechanism which channels a fraction of the released energy into reheating the Standard Model degrees of freedom. This is because a nonnegligible fraction of the false vacuum energy of the brane-antibrane system naturally ends up being deposited into massless modes on branes which are localized inside the most strongly-warped throats, rather than being dumped completely into massless bulk-state modes.

This process relies on what is known about brane-antibrane annihilation in flat space, where it is believed that the annihilation energy dominantly produces very massive closed-string states, which then quickly themselves decay to produce massive KK modes for massless string states. What is important for our purposes is that the wave functions for all of the massive KK modes of this type are typically exponentially enhanced at the bottom of warped throats, while those for the massless KK bulk modes are not. This enhancement arises because the energies of these states are minimized if their probabilities are greatest in the most highly warped regions. This peaking is crucial because it acts to suppress the couplings of the massive KK modes to the massless bulk states, while enhancing their couplings to brane modes in the most warped throats.

Although the couplings of the KK modes to SM degrees of freedom are enhanced, the KK modes must first tunnel from the inflation throat to the SM throat. This results in most of the energy density of the brane-antibrane system ending up as massless gravitons, and only a small fraction P going into visible matter. Nevertheless, for reasonable values of the string coupling and the warp factor of the inflationary throat, P can be as large as $10^{-3} - 10^{-4}$. Since the initial reheat temperature is high, there are many decades of evolution in temperature during which the decoupled gravitons can be diluted by events which increase the entropy of the thermalized visible sector particles relative to the gravitons. In this way it is quite plausible that big bang nucleosynthesis bounds on the energy density of gravitons can be satisfied.

From this point of view, it is possible to efficiently reheat the SM brane after brane-antibrane inflation, so long as there are no other hidden branes lying in even deeper throats than the SM, which would have a larger branching ratio for visible sec-
tor decay than the SM. This observation is all the more interesting given the attention which multiple-throat inflationary models are now receiving, both due to the better understanding which they permit for the relation between the inflationary scale and those of low-energy particle physics, and to the prospects they raise for producing long-lived cosmic string networks with potentially observable consequences.

Acknowledgements

It is a pleasure to thank Shamit Kachru, Renata Kallosh, Andrei Linde, Juan Maldacena, Anupam Mazumdar, Liam McAllister, Rob Myers, Joe Polchinski, Fernando Quevedo, Raul Rabadán, Eva Silverstein, Horace Stoica and Henry Tye for fruitful discussions. This research is supported in part by funds from NSERC of Canada, FQRNT of Québec and McGill University.

7. Appendix: The 4D View

In this appendix we compute the low-energy couplings amongst the bulk zero modes and brane modes in the effective 4D supergravity obtained after modulus stabilization à la KKLT [10]. Besides checking the scaling of the kinetic terms obtained by dimensionally reducing the Einstein-Hilbert action, this also allows the study of the couplings in the scalar potential which arise from modulus stabilization and so are more difficult to analyze from a semiclassical, higher-dimensional point of view.

To this end imagine integrating out all of the extra-dimensional physics to obtain the low-energy effective 4D supergravity for a Type IIB GKP vacuum having only the mandatory volume modulus (and its supersymmetric friends) plus various low-energy brane modes (such as those describing the motion of various D3 branes). The terms in this supergravity involving up to two derivatives are completely described once the Kähler function, K, superpotential, W, and gauge kinetic function, f_{ab}, are specified.

Denoting the bulk-modulus supermultiplet by T and the brane multiplets by ϕ^I, we use the Kähler potential [34, 10, 11, 35]

$$K = -3 \log |r|,$$

where $r = T + T^* + k(\phi, \phi^*)$. For instance, if ϕ^I denotes the position of single brane, then k is the Kähler potential for the underlying 6D manifold. This implies the scalar
kinetic terms are governed by the following Kähler metric in field space

\[K_{TT^*} = \frac{3}{r^2}, \quad K_{IT^*} = \frac{3k_I}{r^2} \quad \text{and} \quad K_{IJ^*} = \frac{3}{r^2} \left[k_I k_{J^*} - r k_{IJ^*} \right], \quad (7.2) \]

with inverse

\[K^{T^*T} = \frac{r}{3} \left[r - k^{L^*N} k_L k_N \right], \quad K^{I^*T} = \frac{r k^{J^*L} k_L}{3} \quad \text{and} \quad K^{I^*I} = -\frac{r k^{J^*I}}{3}. \quad (7.3) \]

In the absence of modulus stabilization the superpotential of the effective theory is a constant \[W = w_0, \] and the supergravity takes the usual no-scale form \[[37], \] with vanishing scalar potential. If, however, there are low-energy gauge multiplets associated with any of the D7 branes of the model then their gauge kinetic function is \(f_{ab} = T \delta_{ab}. \) For nonabelian multiplets of this type gaugino condensation \[[38, 39] \] can generate a nontrivial superpotential, of the form

\[W = w_0 + A \exp \left[-a T \right], \quad (7.4) \]

where \(A \) and \(a \) are calculable constants.

With these choices the Kähler derivatives of the superpotential become

\[D_TW = W_T - \frac{3W}{r}, \quad \text{and} \quad D_IW = -\frac{3k_I W}{r}, \quad (7.5) \]

and so the supersymmetric scalar potential \[[40] \] becomes

\[V = \frac{1}{3r^2} \left[\left(r - k^{I^*J} k_{I^*J} \right) |W_T|^2 - 3(W^*W_T + WW_T^*) \right]. \quad (7.6) \]

Notice that use of these expression implicitly requires that we work in the 4D Einstein frame, and so are using 4D Planck units for which \(M_p = O(1). \)

If we specialize to the case of several branes, for which \(\{ \phi^I \} = \{ \phi^i_n \}, \) with \(i \) labelling the fields on a given brane and \(n = 1, \ldots, N \) labelling which brane is involved, then we typically have

\[k(\phi^I, \phi^{I*}) = \sum_n k^{(n)}(\phi^i_n, \phi^{i*}_n). \quad (7.7) \]

In this case the Kähler metric built from \(k \) is block diagonal, with \(k_{injn} = k^{(n)}_{ij} \delta_{mn}, \) and so \(k^{I^*J} k_{I^*J} = \sum_n k^{(n)}_{ij} k^{(n)}_{ij} k^{(n)}_{ij} \) and so on.

We may now see how strongly the bulk KK zero modes, \(g_{\mu\nu} \) and \(T, \) couple to one another and to the brane modes. Setting \(k = 0 \) in the above shows that the couplings of \(T \) and \(g_{\mu\nu} \) to one another are order unity, and since our use of the standard 4D
supergravity formalism requires us to be in the Einstein frame, this implies these are all of 4D Planck strength (in agreement with our higher-dimensional estimates).

Couplings to the branes are obtained by keeping k nonzero, and in the event that the branes are located in highly warped regions, we must take $k^{(n)} = O(a_n^2)$ with $a_n \ll 1$ denoting the warp factor at the position of brane n. In this case the combination $k^{*(i)} k^{*(j)} k^{(n)}$ is also $O(a_n^2)$.

Suppose we now expand the functions $k^{(n)}$ in powers of ϕ and keep only the leading powers:

$$k^{(n)} \approx a_n^2 \sum_i \phi^*_n \phi^i_n.$$ \hspace{1cm} (7.8)

Then, since the ϕ_n kinetic terms are $O(a_n^2)$, we see that the canonically-normalized fields are $\chi^i_n = a_n \phi^i_n$. Once this is done the leading couplings to T and $g_{\mu\nu}$ are those which involve those parts of $k^{(n)}$ that are quadratic in χ^i_n; and since these are also order unity, these couplings are also of Planck strength (again in agreement with our earlier estimates).

Alternatively, consider now those couplings which only involve the brane modes. Working to leading order in a_n^2, we see that a term in $k^{(n)}$ of the form $(\chi^i_n)^k$ has a strength which is of order a_n^{2-k}. For instance the case $k = 3$ generates cubic couplings from the kinetic lagrangian of order $a_n^{-1} \chi \partial \chi \partial \chi$, whose coefficient is of order $(a_n M_p)^{-1} = M_{sm}^{-1}$. These are larger than Planck suppressed ones, as expected.

References

7For instance, this power of a_n reproduces the a_n-dependence of the factor $\sqrt{\gamma_{\mu\nu}}$ obtained by dimensionally reducing the higher-dimensional kinetic terms.

D1-strings inside a D3-brane,” JHEP 0403 (2004) 055 [hep-th/0402072];

