Electronics Issues & challenges for future linear colliders

Patrick Le Dû
Commissariat à l’Energie Atomique (CEA), France
pledu@cea.fr
Vertex technologies

CMOS (Monolithic Active Pixel Sensor) (MIPS/Strasbourg)
- Concept from visible light detectors
- Fast readout and on-chip analog processing
- Few microns thick silicon layer
- Excellent spatial resolution (10-20 μm)
- Highly sensitive to UV and visible light
- Low background noise

DEPFET (Bonn,mpi)
- FET-Transistor integrated in every pixel (first application)
- No charge transfer
- Very limited power consumption (~1W for the full VD)
- Low noise allows 50 μm thick silicon layers

Common Challenges

- Everything ON detector
- Column RO specification
- Power cycling
- Readout during bunch train
- Influence of RF pick-up?

Technology forecast (2005-2015)

- FPGA for signal processing and buffering
 - Integrates receiver links, PCI, DSPs and memory...
- Processors and memories
 - Continuous increasing of the computing power
 - Memory size quasi unlimited!
 - Today : 256 MB
 - 2010 : 1 GB... than ?
- Links & Networks:
 - Commercial telecom/computer standards
 - 10-30-100 GBEthernet!
 - Systematic use of COTS products
 - make decision at TO -3 years

TPC Read Out

- Main Features
 - VFE: GEM/Micromegas/Digital (Medipix)
 - No active gating
 - Continuous Read Out during the full bunch train (1 ms)
 - Minimize RO material in the end cap

Data Flow

- Software trigger concept → No hardware trigger!
 - Trigger: Software Event Selection
 - Event classification
 - Signal processing – digitization, no trigger interrupt
 - Sparcification, cluster finding and/or data compression
 - No hardware trigger!

Calorimeters Read Out

- Today
 - CALICE UK group: P. Dauncey
 - APD fibre masks or flat-band connector to SiPM cassette RO printed circuit
 - NA60 (ALICE DAQ scheme)

- Tomorrow investigation
 - NA60 – ALICE DAQ scheme
 - DAQ PC

Advantages → all

- Flexible
 - fully programmable
 - unforeseen backgrounds and physics rates easily accommodated
 - Machine people can adjust the beams using background events
- Easy maintenance and cost effective
 - Commodity products: Off the shelf technology
 - commonly OS and high level languages
- Scalable:
 - modular system
 - looks like the ‘ultimate trigger’ → satisfy everybody: no loss and fully programmable.
1. **Estimates Rates and data volume**

- **Physics Rate:**
 - $e^- + e^+ \rightarrow X$: 0.0002/BX
 - $e^- + e^+ \rightarrow e^+ + e^-$: 0.7/BX

- **Background:**
 - VXD inner layer: 1000 hits/BX
 - TPC: 15 tracks/BX

- Background is dominating the rates!

2. **Tesla Architecture (TDR 2003)**

- Detector Channels:

- **Event building Network**

3. **Summary**

- The ILC environment poses new challenges & opportunities which will need new technical advances in VFE and RO electronics.
 - **NOT LEP/SLD, NOT LHC!**

- Basic scheme: The FEE integrates everything from signal processing & digitizer to the RO BUFFER.

- Very large number of channels to manage (Trackers & EM)
 - Should exploit power pulsing to cut power usage during interburst.

- New System aspects (boundaries ..
 - Interface between detector and machine is fundamental.

- Burst mode allows a fully software trigger.
 - Looks like the Ultimate Trigger: Take EVERYTHING & sort later! GREAT! A sociological simplification!

4. **About systems boundaries ….. moving due to !**

- **evolution of technologies, sociology …..**

5. **ICL ‘today’ Data Collection Network model**

- **Event building Network**

- **Detector Channels**

- **Event building Network**

- **Computing resources (Storage & analysis farm)**

- **30 Mbytes/sec → 300 TBytes/year**