Number of Spin \(j \) States of Identical Particles

Y. M. Zhao\(^1,2,3,4,5\) and A. Arima\(^5\)

\(^1\)Department of physics, Shanghai Jiao Tong University, Shanghai 200030, China
\(^2\)Cyclotron Center, Institute of Physical Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
\(^3\)Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China
\(^4\)Department of Physics, Southeast University, Nanjing 210018, China
\(^5\)Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyoda, Tokyo 102-0091, Japan

(Dated: January 27, 2005)

In this paper we study the enumeration of number (denoted as \(D_I \)) of spin \(j \) states for fermions in a single-\(j \) shell and bosons with spin \(l \). We show that \(D_I \) can be enumerated by the reduction from \(SU(n+1) \) to \(SO(3) \). New regularities of \(D_I \) are discerned.

PACS numbers: 05.30.Fk, 05.45.-a, 21.60Cs, 24.60.Lz

Keywords:

The enumeration of number of spin \(I \) states (denoted as \(D_I \)) for fermions in a single-\(j \) shell or bosons with spin \(l \) (We use a convention that \(j \) is a half integer and \(I \) is an integer) is a very common practice in nuclear structure theory. One usually obtains this number by subtracting the combinatorial number of angular momentum projection \(M = I + 1 \) from that with \(M = I \). More specifically, \(D_I \) equals to the combinatorial number of angular momentum projection \(M = I + 1 \), where \(M = m_1 + m_2 + \cdots + m_n \), with the requirement that \(m_1 \geq m_2 \geq \cdots \geq m_n \) for bosons and \(m_1 > m_2 > \cdots > m_n \) for fermions, where \(n \) is the number of particles (This procedure is called Process A in this paper.). The combinatorial numbers of different \(M \)'s look irregular, and such an enumeration would be prohibitively tedious when \(j \) and \(l \) are very large. The number of states of a few nucleons in a single-\(j \) shell is usually tabulated in textbooks, for sake of convenience.

Another well-known solution was given by Racah\(^2\) in terms of the seniority scheme, where one has to introduce (usually by computer choice) additional quantum numbers. More than one decade ago, a third route was studied by Katriel et al.\(^6\) and Sunko et al.\(^4\), who constructed generating functions of the number of states for fermions in a single-\(j \) shell or bosons with spin \(l \).

There were two efforts in constructing analytical formulas of \(D_I \). In Ref.\(^6\), \(D_0 \) for \(n = 4 \) was obtained analytically. In Ref.\(^4\), \(D_I \) was constructed empirically for \(n = 3 \) and 4, and some \(D_0 \)'s for \(n = 5 \). It is therefore desirable to obtain a deeper insight into this difficult problem.

Equivalent to Process A, we propose here another procedure, called process B and explained as follows. Let \(\mathcal{P}(I_0) \) be the number of partitions of \(I_0 = i_1 + i_2 + \cdots + i_n \), with \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq 2l + 1 - n \) for fermions or \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq 2l \) for bosons. Here \(I_{\text{max}} = nj - \frac{n(n-1)}{2} \) for fermions in a single-\(j \) shell, and \(I_{\text{max}} = nl \) for bosons with spin \(l \). One defines \(\mathcal{P}(n, I_0) = D_I - I_{\text{max}} = 1 \) for \(I_0 = 0 \). Then one has \(\mathcal{P}(n, I_0) = \mathcal{P}(n, I_0 - 1) \).

Now we look at \(D_I \) for \(\bar{n} \) “bosons” of spin \(L = \frac{3}{2} \), with \(\bar{n} = 2l \) for bosons or \(\bar{n} = 2j + 1 - n \) for fermions. \(I_{\text{max}} \) of these \(\bar{n} \) “bosons” with spin \(L \) equals that of \(n \) bosons with spin \(l \) or that of \(n \) fermions in a single-\(j \) shell. Furthermore, \(\mathcal{P}(n, I_0) \) of \(I_0 = i_1 + i_2 + \cdots + i_n \) with the requirement \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq 2L = n \) always equals that of \(I_0 = i_1 + i_2 + \cdots + i_n \) with the requirement \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq 2j + 1 - n \) for fermions or \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq 2l \) for bosons.

This result can be explained from the fact as follows. The \(\mathcal{P}(n, I_0) \) of \(\bar{n} \) “bosons” with spin \(L \) corresponds to Young diagrams up to \(n \) rows, and \(2l \) columns for bosons or \(2j + 1 - n \) columns for fermions. The conjugates of these Young diagrams are those up to \(2l \) rows for bosons or \(2j + 1 - n \) rows for fermions, and up to \(n \) columns, which correspond to partitions in Process B for \(n \) fermions in a single-\(j \) shell or bosons with spin \(l \). Therefore, Process B for \(\bar{n} \) bosons with spin \(L = n/2 \) provides us with an alternative to construct \(D_I \) for \(n \) bosons with spin \(l \) or \(n \) fermions in a single-\(j \) shell.

This alternative (Process B for \(\bar{n} \) bosons with spin \(L \)) suggests the following identity. If \(l = (2j + 1 - n)/2 \) (\(n \) is even), i.e., \(I_{\text{max}} \) of bosons equals that of fermions, then \(D_I \) for bosons equals that of fermions. This identity is easily confirmed. It means that one can obtain \(D_I \) of \(n \) fermions in a single-\(j \) shell by using that of \(n \) bosons with spin \(l \) or \(2j + 1 - n \) or \(n \) fermions in a single-\(j \) shell or bosons with spin \(l \).

Process B for \(\bar{n} \) bosons with spin \(L = n/2 \) is also useful in constructing formulas of \(D_I \). One can see this point from the fact that Process B involves \(SU(n+1) \) symmetry, which is independent of \(j \) and \(l \), while in Process A different \(j \) shell for fermions and spin \(l \) for bosons involve different symmetries (\(SU(2j+1) \) and \(SU(2l+1) \)).

Below we exemplify our idea by \(n = 4 \). The relevant symmetry for Process B of \(\bar{n} \) bosons with spin \(L \) is \(SU(5) \) (i.e., \(L = n/2 = 2 \), \(d \) bosons). \(\bar{n} \) equals \(2l \) and \(2j - 3 \), for four bosons and four fermions, respectively.

Our first result is that \(D_I \) of four bosons with spin...
\(l \) always equals that of four fermions in a single \(j \) shell when \(l = (2j - 3)/2 \). Our second result is that we can derive \(D_l \) of four bosons with spin \(l \) by this new method. Here one needs \(D_l \) of \(\tilde{n} = 2l \). This problem was studied in the interacting boson model, suggested by Arima and Iachello \(^{[3]} \) in seventies. Below we revisit the enumeration of \(D_l \) for \(d \) bosons with particle number \(\tilde{n} = 2l \).

Let us follow the notation of Ref. \(^{[3]} \) and define \(\tilde{n} = 2l = 2n + v = 2n + 3n_\lambda + \lambda \). \(D_l \) of \(\tilde{n} \) \(d \) bosons is enumerated via the procedure as follows. (1) \(v \) takes value \(2l, 2l - 2, 2l - 4, \ldots, 0 \), which corresponds to \(n = 0, 1, 2, \ldots, n/2 = l \), respectively. (2) For each value of \(v \), \(n_\Delta \) takes value from 0 to \(\left[\frac{\lambda}{6} \right] \). (3) For each set of \(v \) and \(n_\Delta \), \(\lambda \) is determined by \(v - 3n_\Delta \). (4) For each \(\lambda \) obtained in step (3), the allowed spin is given by \(\lambda, \lambda + 1, \lambda + 2, \ldots, 2\lambda - 3, 2\lambda - 2, 2\lambda \). Note that there is no state with \(2\lambda - 1 \). One easily sees that there is no \(I = 1 \) states for \(d \) bosons, because \(\lambda = 1 \) presents \(I = 2 \) state (\(2\lambda - 1 \) is missing).

In order to obtain \(D_l \), it is necessary to know the number of \(\lambda \) appearing in the above process for each \(I \). Let us call this number \(f_\lambda \) and define \(\tilde{n} = 2l = 6k + \kappa, \kappa = 0, 2, 4, \) and \(k \geq 1 \). Below we exemplify how we obtain \(f_\lambda \) by the case of \(\kappa = 0 \). We have the following hierarchy:

\[
\begin{array}{ccc}
\lambda & f_\lambda & v \\
0 & k + 1 & 0, 6, 12, \ldots, 6k \\
1 & k & 4, 10, 16, \ldots, 6k - 2 \\
2 & k & 2, 8, 14, \ldots, 6k - 4 \\
3 & k & 6, 12, 18, \ldots, 6k \\
4 & k & 4, 10, 16, \ldots, 6k - 2 \\
5 & k - 1 & 8, 14, 20, \ldots, 6k - 4 \\
6 & k & 6, 12, 18, \ldots, 6k \\
7 & k - 1 & 10, 16, 22, \ldots, 6k - 2 \\
8 & k - 1 & 8, 14, 20, \ldots, 6k - 4 \\
9 & k - 1 & 12, 18, 24, \ldots, 6k \\
10 & k - 1 & 10, 16, 22, \ldots, 6k - 2 \\
11 & k - 2 & 14, 20, 26, \ldots, 6k - 4 \\
12 & k - 1 & 12, 18, 24, \ldots, 6k \\
13 & k - 2 & 16, 22, 28, \ldots, 6k - 2 \\
14 & k - 2 & 14, 20, 26, \ldots, 6k - 4 \\
15 & k - 2 & 18, 24, 30, \ldots, 6k \\
16 & k - 2 & 16, 22, 28, \ldots, 6k - 2 \\
17 & k - 3 & 20, 26, 32, \ldots, 6k - 4 \\
\vdots & \vdots & \vdots \\
\end{array}
\]

From this tabulation we have that \(f_\lambda = k + \delta_{m0} - \delta_{m5} - \left[\frac{\lambda}{6} \right] \), where \(m \) is equal to \(\lambda \) mod 6 when \(\kappa = 0 \), and \(\left[\cdot \right] \) means to take the largest integer not exceeding the value inside.

For the sake of simplicity we define \(I = 2I_0 \) for even values of \(I \) and \(I = 2I_0 + 3 \) for odd values of \(I \). For \(I_0 \leq l \),

\[
D_{I=2I_0} = \sum_{\lambda=I_0}^{2I_0} f_\lambda. \tag{1}
\]

For \(\kappa = 0 \) and \(I_0 \leq l \) (\(I = 2I_0 \leq 2l \)),

\[
\begin{align*}
D_{I=2I_0} &= (I_0 + 1)k - (9K^2 - K + 3KK + (2K - 5)(2K - 5)) + \delta_{K0} + \delta_{K3} \\
&= \left[\frac{I_0 + 3}{6} \right] + \left[\frac{I_0 + 5}{6} \right] + \delta_{K0} + \delta_{K3}. \tag{2}
\end{align*}
\]

For \(\kappa = 2 \) and \(I_0 \leq l \),

\[
\begin{align*}
D_{I=2I_0} &= (I_0 + 1)(k + 1) - (9K^2 - K + 3KK + (2K - 5)(2K - 5)) \\
&= \left[\frac{I_0 + 3}{6} \right] - \left[\frac{I_0 + 4}{6} \right] + \delta_{K4}. \tag{3}
\end{align*}
\]

For \(I \) is odd and \(I \leq 2l \), we use a relation \(D_{I=2I_0} = D_{I=2I_0+3} = \left[\frac{I_0}{6} \right] + 1 \). This relation was obtained empirically in Ref. \(^{[3]} \) and can be obtained mathematically by calculating

\[
D_{I=2I_0+3} = \sum_{\lambda=I_0+3}^{2I_0+3} f_\lambda
\]

and compare with \(D_{I=2I_0} \).

For the case with \(I \geq 2l \), we define \(I = I_{\text{max}} - 2I_0 \) for even \(I \) and \(I = I_{\text{max}} - 2I_0 - 3 \) for odd \(I \). \(f_{\lambda=I_0} = \left[\frac{I_0}{6} \right] - \delta_{(I_0 \text{ mod } 6),0} \). We obtain that

\[
\begin{align*}
D_{I_{\text{max}}-2I_0} &= D_{I_{\text{max}}-2I_0-3} = 3 \left[\frac{I_0}{6} \right] \left(\left[\frac{I_0}{6} \right] + 1 \right) - \left[\frac{I_0}{6} \right] \\
&\quad + \left(\left[\frac{I_0}{6} \right] + 1 \right) ((I_0 \text{ mod } 6) + 1) + \delta_{(I_0 \text{ mod } 6),0} - 1. \tag{5}
\end{align*}
\]

Thus we solve the problem of enumeration of \(D_l \) for four bosons with spin \(l \) or four fermions in a single-\(j \) shell by using the new enumeration procedure. One may obtain \(D_l \) of other \(n \) (\(n \) is even) cases by applying this method similarly, if the reduction rule of \(SU(n+1) \rightarrow SO(3) \) is available.

A question arises when we apply this method to odd \(n \) cases, for which spin \(L \) of \(n \) bosons involved in Process B is not an integer (\(L = n/2 \)). These bosons are therefore not “realistic”. For such cases \(I \) of \(n \) bosons with
spin l cannot equal that of n fermions in a single j shell. Namely, there is no similar correspondence of D_I between bosons and fermions when n is odd \cite{8}. However, D_I of \bar{n} fictitious bosons with spin $n/2$ (n is odd) obtained by Process A equals that of n bosons with spin l or that of n fermions in a single-j shell, where $\bar{n} = 2l$ (even value) and $2j + 1 - n$ (odd value) for bosons and fermions, respectively. In other words, D_I of \bar{n} fictitious bosons with spin $n/2$ equals that of n bosons with spin l if $\bar{n} = 2l$ or that of n fermions in a single-j shell if $\bar{n} = 2j + 1 - n$, here n is odd. Further discussion is warranted on this problem.

To summarize, We have presented in this paper an alternative to enumerate the number of spin I states, D_I, for n fermions in a single j shell or n bosons with spin l. We proved that D_I of n bosons with spin l equals that of n fermions in a single-j shell when $2l = 2j + 1 - n$, where n is even. We have also exemplified the usefulness of this new method in constructing analytical formulas of D_I by $n = 4$.

For odd n, the procedure of our new method involves half integer spin L for “bosons”. Further consideration of this fictitious situation is necessary.

We would like to thank Professors K. T. Hecht and I. Talmi for their reading and constructive comments of this manuscript.

\[\text{References}\]

\[\text{1} \] For example, R. D. Lawson, Theory of Nuclear Shell Model (Clarendon, Oxford, 1980), P. 8-20.

\[\text{8} \] A correspondence of D_I was noted in Sec. II of Ref. \cite{8} for large I cases.