Multiplicty fluctuations in the string clustering approach

L. Cunqueiro, E. G. Ferreiro, F. del Moral and C. Pajares

Departamento de Física de Partículas and Instituto Galego de Física de Altas Energías, Universidade de Santiago de Compostela,
15782–Santiago de Compostela, Spain

Abstract

We present our results on multiplicity fluctuations in the framework of the string clustering approach. We compare our results–with and without clustering formation–with CERN SPS NA49 data. We find a non-monotonic behaviour of these fluctuations as a function of the collision centrality, which has the same origin as the observed fluctuations of transverse momentum: the correlations between the produced particles due to the cluster formation.

PACS: 25.75.Nq, 12.38.Mh, 24.85.+p
Non-statistical event-by-event fluctuations have been proposed as a possible signature for QCD phase transition. In a thermodynamical picture of the strongly interacting system formed in heavy-ion collisions, the fluctuations of the mean transverse momentum or mean multiplicity are related to the fundamental properties of the system, such as the specific heat, so may reveal information about the QCD phase boundary.

Event-by-event fluctuations of transverse momentum have been measured both at CERN SPS [1–6] and BNL RHIC [7–11]. The data show a non-trivial behaviour as a function of the centrality of the collision. Concretely, the non-statistical normalized fluctuations grow as the centrality increases, with a maximum at mid centralities, followed by a decrease at larger centralities. Different mechanisms [12–29] have been proposed in order to explain those data, including complete or partial equilibration [14,15,22,24], critical phenomena [16,29], production of jets [13,28] and also string clustering or string percolation [26,27].

In particular, we have proposed [26] an explanation for those fluctuations based on the creation of string clusters. In our approach, we find an increase of the mean p_T fluctuations at mid centralities, followed by a decrease at large centrality. Moreover, we obtain a similar behaviour at SPS and RHIC energies. In the framework of string clustering such a behaviour is naturally explained. As the centrality increases, the strings overlap in the transverse plane forming clusters. These clusters decay into particles with mean transverse momentum and multiplicities that depend on the number of strings that conform each cluster. The event-by-event fluctuations on mean p_T and mean multiplicity correspond then to fluctuations of the transverse momentum and multiplicity of those clusters and behave essentially as the number of clusters conformed by a different number of strings. If the number of different clusters –different in this context means that the clusters are made of different numbers of strings– grows, that will lead to an increase of fluctuations. And in fact this number grows with centrality.
up to a maximum. For higher centralities, the number of different clusters decreases.

On the other hand, in a jet production scenario [8], the mean p_T fluctuations are attributed to jet production in peripheral events, combined with jet suppression at larger centralities. A possible way to discriminate between the two approaches could be the study of fluctuations at SPS energies, where jet production cannot play a fundamental role.

Recently, the NA49 Collaboration have presented their data on multiplicity fluctuations as a function of centrality [30,31] at SPS energies. In order to develop the experimental analysis, the variance of the multiplicity distribution $\text{Var}(N) = < N^2 > - < N >^2$ scaled to the mean value of the multiplicity $< N >$ has been used. A non-monotonic centrality–system size– dependence of the scaled variance was found. In fact, its behaviour is similar to the one obtained for the $\Phi(p_T)$-measure [32] used by the NA49 Collaboration to quantify the p_T-fluctuations, suggesting they are related to each other [33,34]. The Φ-measure is independent of the distribution of number of particle sources if the sources are identical and independent from each other. This implies that Φ is independent of the impact parameter if the nucleus-nucleus collision is a simple superposition of nucleon-nucleon interactions.

Our aim in this note is to calculate the event-by-event multiplicity fluctuations applying the same mechanism–clustering of colour strings– that we have used previously [26] for the study of the p_T-fluctuations. Let us remember the main features of our model. In each nuclear collision, colour strings are streached between partons from the projectile and the target, which decay into new strings by sea $q - \bar{q}$ production and finally hadronize to produce the observed particles. For the decay of the strings we apply the Schwinger mechanism of fragmentation [35], where the decay is controlled by the string tension that depends on the colour charge and colour field of the string. The strings have longitudinal and transverse dimensions, and the density of created
strings in the first step of the collision depends on the energy and the centrality of the collision. Roughly speaking, one can consider the number of strings N_s in the central rapidity region as proportional to the number of collisions, $N_A^{4/3}$, while in the forward region it becomes proportional to the number of participants, N_A. We define the density of strings in the transverse space as $\eta = \frac{N_s S_1}{S_A}$, where N_s is the total number of strings created in the collision, each one of an area $S_1 = \pi r_0^2$ ($r_0 \simeq 0.2 \div 0.3 \text{ fm}$), and S_A corresponds to the nuclear overlap area, $S_A = \pi R_A^2$ for central collisions. With the increase of energy and/or atomic number of the colliding nuclei, this density grows, so the strings begin to overlap forming clusters [36].

We assume that a cluster of n strings that occupies an area S_n behaves as a single colour source with a higher colour field, generated by a higher colour charge Q_n. This charge corresponds to the vectorial sum of the colour charges of each individual string Q_1. The resulting colour field covers the area S_n of the cluster. As $Q_n^2 = (\sum_1^n Q_1)^2$, and the individual string colours may be arbitrarily oriented, the average $Q_{1i}Q_{1j}$ is zero, so $Q_n^2 = nQ_1^2$ if the strings fully overlap. Since the strings may overlap only partially we introduce a dependence on the area of the cluster. We obtain $Q_n = \sqrt{nS_n S_1}Q_1$ [37]. Now we apply the Schwinger mechanism for the fragmentation of the cluster, and one obtains a relation between the mean multiplicity $<\mu>_n$ and the average transverse momentum $<p_T>_n$ of the particles produced by a cluster of n strings that covers an area S_n:

$$<\mu>_n = \sqrt{nS_n S_1} <\mu>_1 \quad \text{and} \quad <p_T>_n = \left(\frac{nS_1}{S_n}\right)^{1/4} <p_T>_1,$$

(1)

where $<\mu>_1$ and $<p_T>_1$ correspond to the mean multiplicity and the mean transverse momentum of the particles produced by one individual string.

In order to obtain the mean p_T and the mean multiplicity of the collision at a given centrality, one needs to sum over all formed clusters and to average over all events:
\[< \mu > = \frac{\sum_{i=1}^{N_{\text{events}}} \sum_{j} < \mu >_{n_j}}{N_{\text{events}}}, \quad < p_T > = \frac{\sum_{i=1}^{N_{\text{events}}} \sum_{j} < \mu >_{n_j} < p_T >_{n_j}}{\sum_{i=1}^{N_{\text{events}}} \sum_{j} < \mu >_{n_j}}. \] (2)

The sum over \(j \) goes over all individual clusters \(j \), each one formed by \(n_j \) strings and occupying an area \(S_{n_j} \). The quantities \(n_j \) and \(S_{n_j} \) are obtained for each event, using a Monte Carlo code [38,39], based on the quark gluon string model. Each string is generated at an identified impact parameter in the transverse space. Knowing the transverse area of each string, we identify all the clusters formed in each event, the number of strings \(n_j \) that conforms each cluster \(j \), and the area occupied by each cluster \(S_{n_j} \). Note that for two different clusters, \(j \) and \(k \), formed by the same number of strings \(n_j = n_k \), the areas \(S_{n_j} \) and \(S_{n_k} \) can vary. Because of this we do the sum over all individual clusters. So we use a Monte Carlo for the cluster formation, in order to compute the number of strings that come into each cluster and the area of the cluster.

On the other hand, we do not use a Monte Carlo code for the decay of the cluster, since we apply analytical expressions (eqs. (1)) for the transverse momentum \(< p_T >_{n_j} \) and the multiplicity \(< \mu >_{n_j} \) of each individual cluster.

In order to obtain the scaled variance we calculate \(< \mu^2 > \):

\[< \mu^2 > = \frac{1}{N_{\text{events}}} \left[\sum_{i=1}^{N_{\text{events}}} \left(\sum_j \sqrt{\frac{n_j S_{n_j}}{S_1}} \right)^2 < \mu >_1^2 + \sum_{i=1}^{N_{\text{events}}} \sum_j \sqrt{\frac{n_j S_{n_j}}{S_1}} < \mu >_1 \right], \] (3)

where we have supposed that the multiplicity of each cluster follows a Poissonian of mean value \(< \mu >_{n_j} \), and we have applied the property for a Poissonian:

\[< \mu^2 >_{n_j} = < \mu >_{n_j}^2 + < \mu >_{n_j}. \]

Finally, our formula for the scaled variance obeys:

\[\frac{\text{Var}(\mu)}{< \mu >} = 1 + < \mu >_1 \frac{\langle \left(\sum_j \sqrt{\frac{n_j S_{n_j}}{S_1}} \right)^2 \rangle - \langle \sum_j \sqrt{\frac{n_j S_{n_j}}{S_1}} \rangle^2}{\langle \sum_j \sqrt{\frac{n_j S_{n_j}}{S_1}} \rangle}, \] (4)

where the mean value in the r.h.s. corresponds to an average over all events.

The behaviour of this quantity is as follows: in the limit of low density –isolated strings that do not interact–,
\[
\frac{Var(\mu)}{<\mu>} = 1 + <\mu> \frac{<N_s^2> - <N_s>^2}{<N_s>} \\
\tag{5}
\]

where \(N_s\) corresponds to the number of strings. Considering that, for a fixed number of participants, the number of strings behaves as a Poissonian distribution we obtain

\[
\frac{<N_s^2> - <N_s>^2}{<N_s>} \simeq 1, \\
\tag{6}
\]

so

\[
\frac{Var(\mu)}{<\mu>} = 1 + <\mu> \tag{7}
\]

In the large density regime – all the strings fuse into a single cluster that occupies the whole interaction area – we have:

\[
\frac{Var(\mu)}{<\mu>} = 1 + <\mu> \frac{\left\langle \left(\frac{N_s S_A}{S_1} \right)^2 \right\rangle - \left\langle \frac{N_s S_A}{S_1} \right\rangle^2}{\left\langle \frac{N_s S_A}{S_1} \right\rangle^2}, \\
\tag{8}
\]

where \(S_A\) is the nuclear overlap area. The second element of the r.h.s. of this equation tends to zero, and the scaled variance becomes equal to one.

Our results for the scaled variance for negative particles \(\frac{Var(n^-)}{<n^->}\) compared to experimental data [30,31] are presented in Fig. 1. Note that in order to obtain these results we need to fix the value of the parameter \(<\mu>_1\). It is defined as \(<\mu>_1 = <\mu>_0 \Delta y\), where \(<\mu>_0\) is the number of particles produced by one individual string and \(\Delta y\) corresponds to the rapidity interval considered. We do not introduce any dependence of \(<\mu>_0\) with the energy or the centrality of the collision. The value of \(<\mu>_0\) has been previously fixed from a comparison of the model to SPS and RHIC data [37,40] on multiplicities. In the first Ref. of [37], the total multiplicity per unit rapidity produced by one string has been taken as \(<\mu>_0^\text{tot} \simeq 1\). If we assume that 1/3 of the created particles are negative, that would lead to a negative particle multiplicity per unit rapidity for each individual string of \(<\mu>_0^\text{neg} = 0.33\). The rapidity interval considered, in order to compare with NA49 experimental data, is \(4.0 < y < 5.5\). The data are
obtained in a restricted p_T range, $0.005 < p_T < 1.5$ GeV/c, while our results take into account all possible transverse momenta. Nevertheless, the experimental acceptance covers the small p_T region, which gives the largest contribution at SPS energies. Because of this, we obtain a good agreement for the centrality dependence of $< p_T >$ (see Table 1 of Ref. [26] for more details.).

In Figs. 2 and 3 we present separately our results for the variance $V(n^-)$ and the mean multiplicity $< n^- >$ of negatively charged particles. We have included our results without clustering formation. One can observe that, when clustering is included, we find a perfect agreement with experimental data for the mean multiplicity. Concerning the variance and the scaled variance, the agreement is less good, but still one can see that the clustering works in the right direction: it produces a decrease of the variance in the central region—where the density of strings increases so the clustering has a bigger effect—. Instead of that, without clustering, the scaled variance tends to a monotonic behaviour with centrality. Note that, if no clustering is taken into account, our result for the variance is qualitatively similar to the HIJING simulation. From eqs. (4) to (8) one can also deduce what will be the behaviour of the scaled variance if both positively and negatively particles are taken into account: there will be an increase of the scaled variance in the fragmentation region—low number of participants and low density of strings— according to eq. (7), due to the increase of $< \mu >_1$, that now becomes proportional to $2/3$ of $< \mu >_0$. In the most central region our result for the scaled variance essentially does not change, since the dependence on $< \mu >_1$ is in this region much smaller, according to eq. (8). In our approach, the scaled variance for the positive particles is equal to the one for the negatives particles, since both depend on $< \mu >_1$ in the same way. This is in agreement with experimental data [5].

In Fig. 4 we present our prediction for the scaled variance at RHIC energies. The behaviour is similar to the one obtained at SPS energies. This is in accordance with our
results for the mean p_T fluctuations. Note that now $<\mu>_1$ is going to be smaller than in the SPS case, since we take $\Delta y=0.7$, according with the experimental acceptance of PHENIX experiment. This in principal implicates smaller correlations. On the other hand, at RHIC energies we have a higher value for the mean number of strings at fixed N_{part}. Both effects tend to compensate each other, specially in the small and mid centrality region –where $<\mu>_1$ plays a fundamental role, according to eq. (7)–. In the large centrality region we can observe that the effect of clustering leads to a scaled variance very close to one.

In conclusion, we have found a non-monotonic dependence of the multiplicity fluctuations with the number of participants. The centrality behaviour of these fluctuations is very similar to the one previously found for the mean p_T fluctuations. In our approach, the physical mechanism responsible for multiplicity and mean p_T fluctuations is the same [26]: the formation of clusters of strings that introduces correlations between the produced particles. On the other hand, the mean p_T fluctuations have been also attributed [8] to jet production in peripheral events, combined with jet suppression in more central events. However, this hard-scattering interpretation, based on jet production and jet suppression, can not be applied to SPS energies, so it does not explain the non-monotonic behaviour of the mean p_T fluctuations neither the relation between mean p_T and multiplicity fluctuations at SPS energy. Other possible mechanism, extensively discussed in [33,34] are: combination of strong and electromagnetic interaction, dipole-dipole interaction and non-extensive thermodynamics. Still, it is not clear if these fluctuations have a kinematic or dynamic origin, but clustering of colour sources remains a good possibility, since:

- It can reproduce the qualitative behaviour of the even-by-event fluctuations with centrality.
• In this approach, mean p_T fluctuations and multiplicity fluctuations are naturally related.

• It applies at SPS and RHIC energies.

Acknowledgments

It is a pleasure to thank N. Armesto for interesting discussions and helpful suggestions.
REFERENCES

FIG. 1. Our results for the scaled variance of negatively charged particles in Pb+Pb collisions at $P_{\text{lab}} = 158$ AGeV/c compared to NA49 experimental data. The dashed line corresponds to our result when clustering formation is not included, the continuous line takes into account clustering.
FIG. 2. Our results for the variance of negatively charged particles in Pb+Pb collisions at $P_{lab} = 158$ AGeV/c compared to NA49 experimental data. The dashed line corresponds to our result when clustering formation is not included, the continuous line takes into account clustering.
FIG. 3. Our results for the mean multiplicity of negatively charged particles in Pb+Pb collisions at $P_{lab} = 158$ AGeV/c compared to NA49 experimental data. The dashed line corresponds to our result when clustering formation is not included, the continuous line takes into account clustering.
FIG. 4. Our results for the scaled variance of negatively charged particles in Au+Au collisions at $\sqrt{s} = 200$ GeV. The dashed line corresponds to our result when clustering formation is not included, the continuous line takes into account clustering.