Reply To “Comment on ‘Quantum Convolutional Error-Correcting Codes’ ”

H. F. Chau

Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong and
Center of Theoretical and Computational Physics,
University of Hong Kong, Pokfulam Road, Hong Kong
(Dated: June 3, 2005)

In their comment, de Almedia and Palazzo [1] discovered an error in my earlier paper concerning the construction of quantum convolutional codes [2]. This error can be repaired by modifying the method of code construction.

PACS numbers: 03.67.Pp, 89.70.+c

de Almedia and Palazzo [1] found a counter-example showing the invalidity of Theorems 2 and 3 in my earlier paper in Ref. [2]. Their counter-example is correct; and the source of error lies with the proof of Lemma 2 in Ref. [2]. In fact, Lemma 2 is not correct and Theorem 3 should be modified as follows. (It is straightforward to extend the modified theorem to cover the case of qudits.)

Theorem 3. Let C_1 be a classical (block or convolutional) code of rate r_1 and distance d_1 and let C_2 be the $[n_2 = d_2, 1, d_2]$ majority vote classical code of rate r_2, namely, the one that maps $|t\rangle$ to $\bigotimes_{j=1}^{n_2} |t\rangle$. We construct a quantum code C by first encoding a quantum state by C_1, then by applying a Hadamard transform to every resultant qubit, and finally by encoding each of the Hadamard transformed qubit by C_2. The rate and minimum distance of code C equal $r_1 r_2$ and $\min(d_1^2, d_2)$ respectively, where d_1^2 is the minimum distance of the (classical) dual code of C_1.

Proof. Clearly, the rate of code C equals $r_1 r_2$. So, we only need to show that its minimum distance is $\min(d_1^2, d_2)$. Let us examine the classical code C_1 and the quantum code C in the stabilizer formalism. We denote the operation of applying σ_x (σ_z) to the ith qubit by X_i (Z_i). The encoded operation that flips the spin of the ith unencoded qubit for the classical code C_1 can be expressed in the form $X_i^{f_{1}(1)} \circ X_i^{f_{1}(2)} \circ \cdot \cdot \cdot \circ X_i^{f_{1}(j)}$, where f_i is a binary-valued function. The dual code of C_1 is a linear space spanned by vectors in the form $\prod_{j=1}^{n_2} X_j^{g_{j}(1)}$, where g_j's are some binary-valued functions. Since C_2 is the majority vote code, from our construction of C, the encoded operation that flips the spin (shifts the phase) of the ith unencoded qubit for the quantum code C is given by $\prod_{j=1}^{n_2} \prod_{k=1}^{d_2} Z_{n_2(m-1)+1+k} \prod_{j=1}^{n_2} \prod_{k=1}^{d_2} X_{n_2(j-1)+k}$. Furthermore, the stabilizer of C equals the span of $\{Z_{n_2(m-1)+1} \circ Z_{n_2(m-1)+\ell} \prod_{j=1}^{n_2} \prod_{k=1}^{d_2} X_{n_2(j-1)+k} : \ell = 2, 3, \ldots, n_2 \}$ and $m, s \geq 1 \}$. So just like CCS codes, the spin flip and phase shift errors in the quantum code C can be corrected separately. After explicitly writing down the encoded operations and the generators of the stabilizer for the (degenerate) quantum code C, it is straightforward to check that C detects all spin errors happened to less than d_2 qubits. Moreover, all phase shift errors involving with less than $\min(d_1^2, d_2)$ qubits are in the stabilizer. Thus, the minimum distance of code C is $\min(d_1^2, d_2)$. \square

Acknowledgments

This work is supported by the RGC grant HKU 7010/04P of the HKSAR Government.
