Individual choices are either based on personal experience or on information provided by peers. The latter case, causes individuals to conform to the majority in their neighborhood. Such herding behavior may be very efficient in aggregating disperse private information, thereby revealing the optimal choice. However if the majority relies on herding, this mechanism may dramatically fail to aggregate correctly the information, causing the majority adopting the wrong choice. We address these issues in a simple model of interacting agents who aim at giving a correct forecast of a public variable, either seeking private information or resorting to herding. As the fraction of herders increases, the model features a phase transition beyond which a state where most agents make the correct forecast coexists with one where most of them are wrong. Simple strategic considerations suggest that indeed such a system of agents self-organizes deep in the coexistence region. There, agents tend to agree much more among themselves than with what they aim at forecasting, as found in recent empirical studies.

Information affects in many subtle ways socio-economic behavior, giving rise to non-trivial collective phenomena. For example, a key function of markets is that of aggregating the information scattered among traders into prices. However, if traders rely on the information conveyed by prices, this same mechanism may lead to self-sustaining speculative bubbles. Likewise, we deduce the worth of a restaurant or the importance of a research subject from its crowdedness or popularity. However, popularity can consecrate even totally random choices.

Collective herding phenomena in general pose quite interesting problems in statistical physics. To name a few examples, anomalous fluctuations in financial markets, opinion dynamics and the way in which social changes take place have been related to percolation and random field Ising models. It is natural to expect herding behavior when it is convenient for the individuals to follow the herd. For example, when the majority is buying in the stock market, prices go up, hence buying becomes the right thing to do (at least in the short run). If a technology (e.g. fax machine) is widely adopted, it becomes more convenient to adopt it. Herding takes place even in cases where agents’ behavior does not influence the outcome, if agents try to infer information about the optimal choice from the actions of others. Ref. \[8\] discusses the relevance of these considerations for issues ranging from the prevalence of crime, marketing, fads and fashions to the onset of protests such as that leading to the collapse of the East German regime. Ref. \[8\] remarks that herding might explain why financial forecasters tend to make very similar predictions – whose diversity is much smaller than the prediction’s error.

From the theoretical side, the onset of herding and the resulting failure of information aggregation has been shown to occur in models of information cascades \[1\]. The prototype example is that of a number of individuals choosing one of two restaurants on the basis of some private noisy information. If each of them follows the recommendation of his/her private signal, the majority will choose the best restaurant. However if an individual can observe what others have chosen before, he/she can infer their information from their choices and take advantage of this. This however leads him/her to follow the crowd disregarding private information. As a result, choices disclose no further information and there is a sizeable probability that all people enter the worse restaurant.

In this letter, we show that information herding can bring to non-trivial collective phenomena even when agents observe a finite number of peers and act in no particular order. In particular, a population of selfish agents fails to correctly aggregate information because herding brings the system into a coexistence region, where the vast majority of agents “agrees” on the same forecast, not necessarily the right one. A statistical mechanics approach gives a detailed account of the results in terms of a zero temperature spin model with asymmetric interaction. These insights extend to the case where agents have to forecast a variable in a continuous interval. Again we find a spinodal point beyond which forecasts tend to cluster, as observed in Ref. \[8\].

Let us consider a population of agents who have to forecast a binary event $E \in \{\pm 1\}$. Each agent $i = 1, \ldots, N$ faces the choice of either looking for information or herding. We shall denote by I and H, respectively, these two strategies, as well as the set of agents who follow them. In the former case agent $i \in I$ receives some private information $\theta_i \in \{\pm 1\}$ about E. We assume that θ_i is drawn independently $\forall i \in I$ with $P\{f_i = E\} = p > 1/2$, i.e. that private signals are informative about E. On the basis of this signal, agent i makes a forecast $f_i = \theta_i$. In the case of strategy H, agents receive a private information $\theta_i = \pm 1$ which is uncorrelated with E (i.e. $P\{\theta_i = \pm 1\} = 1/2$ i.i.d. for all $i \in H$). Each agent $i \in H$ information gathered by a sample group of other agents: He/she forms a sample group G_i by picking an odd number K of other agents at random, observes their forecasts f_j and sets his/her forecast to that of the majority of agents $j \in G_i$. Notice first that $j \in G_i$ – i.e.
\(i\) observing \(j\) — does not imply that \(i \in G_j\) — i.e., that \(j\) observes \(i\). Secondly, the forecast of \(i\) may depend on the forecast of other agents who are themselves herding. Hence we assume that forecasts are formed by the following iterative process, mimicking a sort of information exchange: Forecasts are initialized to private signals \(f_i = \theta_i\) for all \(i\). Next, an agent \(i \in H\) is chosen at random and its forecast is updated to that of the majority of \(j \in G_i\).

\[
f_i \to f'_i = \text{sign} \sum_{j \in G_i} f_j.
\]
(1)

This process is repeated until it converges and we denote simply by \(f_j\) the fixed point values of the forecasts. It is important to stress that agents receive information on \(E\) and form their forecast only after they have chosen their strategy. In other words, agents have access to either type of information but not to both. This is natural if both strategies imply a fixed cost: then either agents invest in information seeking or in forming a sample group.

Before dealing with the game theoretic case where each agent chooses a strategy so as to maximize a payoff, let us focus on the case where a fixed fraction \(\eta\) of agents follow the \(H\) strategy and the rest follows the \(I\) strategy. By definition, the probability of a right forecast of \(i \in I\) is \(P(f_i = E| i \in I) = p\), whereas for \(i \in H\) we define

\[
q = \frac{1}{\eta N} \sum_{i \in H} \delta_{f_i,E} \simeq P(f_i = E| i \in H).
\]
(2)

The inset of Fig. 1 shows the behavior of \(q\) as a function of \(\eta\) in typical numerical simulations. The average \(\langle q \rangle\) of \(q\) over different realizations is also reported in Fig. 1. When \(\eta\) is small, herding is quite efficient and it yields more accurate predictions than information seeking \((\langle q \rangle > p)\). Actually the probability \(q\) that \(H\)-players end up with the correct forecast increases with \(\eta\) up to a maximum. This is because herders use the information of other herders who have themselves a higher performance than private information forecasters. However, beyond a certain point, outcomes with a value \(q < p\) start to appear, coexisting with outcomes with \(q \approx 1\). Consequently the average \(\langle q \rangle\) starts decreasing. The low \(q\) state becomes more and more probable as \(\eta\) increases, and for \(\eta\) close to one we find \(\langle q \rangle < p\).

In order to shed light on the above results, let us notice that the probability of a randomly drawn agent to give the right forecast is

\[
P(f_i = E) = \pi = (1 - \eta)p + \eta q.
\]
(3)

In order to derive an equation for \(q\) we observe that a herding agent adopts the point of view of the majority of

\[
q = \sum_{g = (K + 1)/2}^{K} \left(\frac{K}{g} \right) \pi^g (1 - \pi)^{K-g} \quad \text{for} \quad q \in (0,1)
\]
(4)

These are two self consistent equations for \(q\). For a given value of \(p\), the solution is unique for \(\eta < \eta_c(p, K)\) whereas for \(\eta > \eta_c(p, K)\), as shown in Fig. 1, we find three solutions, which we denote by \(q_+ > q_0 > q_-.\) The critical point \(\eta_c\) increases with \(p\) and with \(K\).

A direct calculation shows that the average number of fixed points of Eqs. \(3-4\) is dominated by configurations \(\{f_i\}\) for which \(q\) satisfies Eqs. \(3-4\). Interestingly, we find that the average number of fixed points \(N \simeq (K^K e^{-K}/K!)^{\eta N}\) is the same on all the solutions.

Linear stability shows that the fixed points \(q_\pm\) are stable whereas the one at \(q_0\) is unstable. To see this, imagine that at iteration \(t\), the fraction of agents \(i \in H\) with a correct forecast is \(q(t) = q^* + \delta q(t)\), where \(q^*\) is a solution of \(q^* = \sum_K \eta q^* + (1 - \eta)p\). Then at time \(t + 1\) we have \(\delta q(t + 1) \simeq \sum_K \eta q^* \delta q(t)\), and it is easy to show that \(\delta q\) vanishes for \(q^* = q_+\) whereas it diverges exponentially for \(q^* = q_-\). The unstable solution \(q_0\) separates the basin of attraction of the fixed points \(q_\pm\). This allows us to estimate the probability \(p_-\) that the system converges to the fixed point \(q_-\), which is the probability that the initial value of \(q(0)\) falls below \(q_0\). Given that variables \(\theta_i\) are assigned a random sign for \(i \in H\), \(q(0)\) is well approximated by a gaussian variable of mean zero and variance...
1/(\eta N). Hence
\[p_- = P\{q(0) < q_u\} \approx \frac{1}{2} \text{erfc}\left(\sqrt{\eta N/2(1 - 2q_u)}\right). \quad (5) \]
The expected value of \(q \) is then given by
\[\langle q \rangle = p_- q_- + (1 - p_-)q_+. \quad (6) \]
Fig. 1 shows that Eq. 6 agrees very well with numerical simulations for large \(N \). The discrepancy for small \(N \) comes from the fact that indeed the dynamics of \(q(t) \) is subject to a noise term of order \(1/\sqrt{N} \) which causes transitions across \(q_u \) in the early stages of the dynamics for small \(N \). It is easy to show that, for \(\eta \approx 1 \),
\[q_u \approx \frac{1}{2} - \frac{(p - 1/2)k!!}{(1 - \eta)} + O(1/\eta) \quad (7) \]
which shows that there is a window of size \(1/\sqrt{N} \) close to \(\eta = 1 \) when \(p_- \) is sizeable. As a consequence, the fall of \(q \) in this region gets steeper and steeper as \(N \) increases.

This consideration is important if we analyze the behavior of selfish agents following game theory \(\S \). We assume for simplicity that agents aim at reaching a correct forecast, i.e. that their payoff is the probability that \(f_1 = E \). As long as \(\langle q \rangle > p \) agents will find it more convenient to switch from the \(I \) to \(H \) strategy. Hence, the fraction \(\eta \) of herders increases when \(\langle q \rangle > p \). The contrary is true when \(\langle q \rangle < p \) and hence we expect that the population will self-organize to a state \(\eta^* \), such that no agent has incentive to change strategy, i.e. where \(\langle q \rangle = p \). Such a state is called a Nash equilibrium \(\S \). Its standard interpretation as the equilibrium of forward looking rational agents, who correctly anticipate the behavior of others, given the rules of the game, and respond optimally, requires agents to solve a rather complex statistical mechanical problem. We will however show below that adaptive agents with limited rationality can “learn” to converge to such a Nash equilibrium.

In light of the the results discussed above, the point where \(\langle q \rangle = p \) – the Nash equilibrium – is attained when all but a fraction \(1 - \eta^* \sim N^{-1/2} \) of agents takes the \(H \) strategy. In addition, because in this region \(q_+ \geq 1 \) and \(q_- \geq 0 \), by Eq. 6 we have \(p_- \geq 1 - p \). This means that the whole population adopts the wrong forecast with probability \(1 - p \), as if it were a single individual forecasting on the basis of private information. Such a spectacular event is similar to the outcome of information cascades \(\S \), but it takes place in a quite different setting.

Does this scenario changes when we introduce heterogeneity in agents’ characteristics? Let us first consider the case where agent \(i \), when using strategy \(H \), can observe \(K_i \) peers. Naively one would expect that agents with larger \(K_i \) receive more precise information and hence should prefer the \(H \) strategy. However, because at the Nash equilibrium almost every agent is making the same prediction, either right or wrong, a larger “window” \(K_i \) does not help. The case where agents have different individual forecasting abilities, i.e. when \(p_i \) depends on \(i \), is a bit more complex. It is reasonable to assume that “expert” agents with \(p_i > q \) will seek private information whereas those with \(p_i < \langle q \rangle \) will herd. Again \(q \) is given by Eqs. 3-4 with
\[\eta = \int_0^{\langle q \rangle} dp \phi(p), \quad (1 - \eta)p = \int_{\langle q \rangle}^1 dp \phi(p) \quad (8) \]
where \(\phi(p) \) is the distribution of \(p_i \). It is easy to show that a solution of Eqs. 3-4 with \(q = \langle q \rangle \), i.e. where \(\eta \) and \(p \) do not fall in the coexistence region is not possible. Indeed the only solution of \(\Sigma K_i [q \int_0^\delta dp \phi(p) + \int_\delta^1 dp \phi(p)] = q \) at \(q = 1 \), which implies \(\eta = 1 \). The solution then lies in the coexistence region, where Eqs. 3-4 have three solutions, and it is found computing \(\langle q \rangle \) as before from Eqs. 5-6 as a function of \(\eta \) and \(p \), and then using Eq. 8 to compute \(\eta \) and \(p \) self-consistently. Again, the Nash equilibrium lies where \(p_- \approx 1 - \langle q \rangle \) is finite as \(N \to \infty \), which, by Eqs. 5-7, implies that \(\eta^* \to 1 \) in this limit.

The results are illustrated in Fig. 2 for the particular case \(\phi(p) = \beta^2 (1 - p)^{\beta - 1}, \quad p \in [1/2, 1] \). When \(\beta \) is large, there is small heterogeneity and \(p_i \approx 1/2 \). Almost all agents follow the \(H \) strategy \((\eta \approx 1 \) and the probability of a wrong forecast \(p_- \approx 1/2 \) is large. As \(\beta \) decreases, the number of “experts” \(p_i > \langle q \rangle \) increases, and correspondingly also the performance of the population as a whole improves (i.e. \(q \) increases and \(p_- \) decreases). In this region, asymptotic analysis shows that the fraction of “experts” \(1 - \eta \sim \sqrt{\log N/N} \).

The analytical results were tested against numerical simulations of adaptive agents who repeatedly play the game and learn, in the course of time, about their optimal choice. In order to do this, agents compute the cumulative payoff for both strategies and adopt the strategy with the largest score \(\S \). As expected, we find that in each run there is a value \(q \) such that all agents with \(p_i > q \) play the \(I \) strategy whereas those with \(p_i < q \) herd. Again some deviations occur for small \(N \) but the agreement improves as \(N \) increases. This shows that the type of equilibria we discuss are “learnable” by a population of not extremely sophisticated agents. It is well known that the type of reinforcement learning dynamics discussed above has close analogies with evolutionary dynamics \(\S \). Hence the above scenario, might as well describe social norms which are the result of evolutionary processes.

The insights of the discrete model hold also when agents have to forecast a continuous variable \(E \). In order to show this, we adopt an asymmetric version of the continuous opinion model of Ref. 3, where a population of \(N \) agents submits forecasts \(\{f_i\} \) of a continuous event \(E \in [0,1] \). Again, forecasters may either seek private information (strategy \(I \)) or herd (strategy \(H \)). All \(I \) agents receive a signal \(f_i \in [0,1] \) which, with probability \(p \) is “correct”, i.e. is randomly drawn from the interval \([E-\epsilon, E+\epsilon]\), and with probability \(1 - p \) is uniformly distributed in \([0,1]\). If instead \(i \in H \), we draw at random sample groups \(G_i \)
of K agents and assign initial random values $f_i^{(0)} \in [0, 1]$ to herding agents. Then we iterate the dynamics over agents j of the group G_i

$$f_i^{(\tau+1)} = f_i^{(\tau)} + \mu(f_j^{(\tau)} - f_i^{(\tau)}) \theta(d - |f_j^{(\tau)} - f_i^{(\tau)})$$

until $|f_i^{(\tau+1)} - f_i^{(\tau)}| < \epsilon$. We denote simply by f_i the limit value of $f_i^{(\tau)}$ in this process. Note that agent i is influenced by $j \in G_i$ only if their opinion are not too far, i.e. if $|f_j^{(\tau)} - f_i^{(\tau)}| < d$. Forecasts are considered to be correct if $|f_i - E| < \epsilon$.

As in Ref. [8], we introduce the forecast error

$$\Sigma = \sqrt{\langle (f - E)^2 \rangle}$$

and the forecast dispersion $\sigma = \sqrt{\langle (f_i - \bar{f})^2 \rangle}$ where \bar{f} denotes the average over agents whereas the average $\langle \ldots \rangle$ is taken over different realizations of the process. The ratio $\phi = \Sigma/\sigma$ called the empirical herding coefficient, is a measure of herding as explained in Ref. [8]. Fig. 3 shows the results of numerical simulations of the model as a function of the fraction η of herders, for a typical choice of the parameters. As in the discrete model, we find that for small values of η the probability $q = P\{|f_i - E| < \epsilon| i \in H\}$ of a correct forecast for herders is larger than that of information seeking agents (p) and it increases because herding agents aggregate the information of other agents who are also herding. Upon increasing η further, q reaches a maximum and then it decreases as the information entering in the system diminishes. In this region, we find coexistence ($\langle q \rangle = p$), is precisely in this region and the herding coefficient attains values $\phi \approx 5 ÷ 10$, which are comparable to those found in Ref. [8] on a survey of earning forecasters of US, EU, UK and JP stocks during the period 1987-2004. The fact that analysts agree with each other five to ten times more than with the actual result, was claimed to be related to herding effects in Ref. [8], a conclusion fully supported by our results. Furthermore, as in the discrete model, the Nash equilibrium moves towards $\eta = 1$ as N increases, thus making herd behavior more pronounced.

In conclusion, we introduced a simple model capturing the tension between private information seeking and exploiting information gathered by others (herding) in a population. When few agents herd, information aggregation is very efficient. This makes herding the choice taken by nearly the whole population, thus setting the system deep in a “coexistence” region where the population as a whole adopts either the right or the wrong forecast. This scenario is rather robust and applies both to a discrete and a continuum model and it compares well with empirical findings [8]. The model and the statistical mechanics analysis can serve as a basis to address a wide range of related issues.

We are grateful to J.-P. Bouchaud, S. Goyal and F. Vega-Redondo for useful discussions. We acknowledge financial support from Swiss National Science Foundation and from EU grant HPRN-CT-2002-00319, STIPCO and EU-NEST project COMPLEXMARKETS.