(Compression Bases in Unital Groups

David J. Foulis*

Abstract

We introduce and launch a study of compression bases in unital groups. The family of all compressions on a compressible group and the family of all direct compressions on a unital group are examples of compression bases. In this article we show that the properties of the compatibility relation in a compressible group generalize to unital groups with compression bases.

Key Words and Phrases: normal sub-effect algebra, compatibility, unital group, compression, compressible group, compression base.

1. Normal Sub-Effect Algebras

If E is an effect algebra [6], then a Mackey decomposition in E of the ordered pair $(e, f) \in E \times E$ is an ordered triple $(e_1, f_1, d) \in E \times E \times E$ such that $e_1 \perp f_1$, $(e_1 \oplus f_1) \perp d$, $e = e_1 \oplus d$, and $f = f_1 \oplus d$. If there exists a Mackey decomposition in E of $(e, f) \in E \times E$, then e and f are said to be Mackey compatible in E.

1.1 Definition Let P be a sub-effect algebra of the effect algebra E [6, Definition 2.6]. Then P is a normal sub-effect algebra of E iff, for all $e, f \in P$, if $(e_1, f_1, d) \in E \times E \times E$ is a Mackey decomposition in E of (e, f), then $d \in P$.

Suppose that E is an effect algebra, P is a sub-effect algebra of E, $e, f \in P$, and $(e_1, f_1, d) \in E \times E \times E$ is a Mackey decomposition of (e, f) in E. Then
\[e \text{ and } f \text{ are Mackey compatible in } E, \text{ but not necessarily in } P. \text{ However, if } P \text{ is a normal sub-effect algebra of } E, \text{ then } d \in P \text{ and, since } e_1 \oplus d = e, f_1 \oplus d = f, \text{ and } d, e, f \in P, \text{ it follows that } e_1, f_1 \in P, \text{ whence } (e_1, f_1, d) \in P \times P \times P \text{ is a Mackey decomposition in } P \text{ of } (e, f). \text{ Therefore, if } P \text{ is a normal sub-effect algebra of } E \text{ and } e, f \in P, \text{ then } e \text{ and } f \text{ are Mackey compatible in } E \text{ iff } e \text{ and } f \text{ are Mackey compatible in } P. \]

1.2 Example The center of an effect algebra \(E \) \(^7\) is a normal sub-effect algebra of \(E \).

Recall that \(G \) is a unital group with unit \(u \) and unit interval \(E \) iff \(G \) is a directed partially ordered abelian group \(^6\), such that \(u \in G^+ := \{ g \in G \mid 0 \leq g \}, \ E := \{ e \in G \mid 0 \leq e \leq u \}, \) and every element \(g \in G^+ \) can be written as \(g = \sum_{i=1}^{n} e_i \) with \(e_i \in E \) for \(i = 1, 2, ..., n \) \(^2\), p. 436. \(\) (The symbol := means “equals by definition.”)

Suppose that \(G \) is a unital group with unit \(u \) and unit interval \(E \). Then \(E \) is an effect algebra with unit \(u \) under the partially defined binary operation \(\oplus \) obtained by restriction of \(+ \) on \(G \) to \(E \) \(^1\). \(\) We note that a sub-effect algebra \(P \) of \(E \) is a normal sub-effect algebra of \(E \) iff, for all \(e, f, d \in E \) with \(e + f + d \leq u \), we have \(e + d, f + d \in P \Rightarrow d \in P \).

1.3 Example Let \(\mathcal{H} \) be a Hilbert space. Then the additive abelian group \(G \) of all bounded self-adjoint operators on \(\mathcal{H} \), partially ordered in the usual way, is a unital group with unit \(1 \). The unit interval \(\mathbb{E} \) in \(G \) is the standard effect algebra of all effect operators on \(\mathcal{H} \), and the orthomodular lattice \(\mathbb{P} \) of all projection operators on \(\mathcal{H} \) is a normal sub-effect algebra of \(\mathbb{E} \). \(\square \)

2. Retractions and Compressions

Let \(G \) be a unital group with unit \(u \) and unit interval \(E \). A retraction on \(G \) with focus \(p \) is defined to be an order-preserving group endomorphism \(J: G \rightarrow G \) with \(p = J(u) \in E \) such that, for all \(e \in E \), \(e \leq p \Rightarrow J(e) = e \). A retraction \(J \) on \(G \) with focus \(p \) is called a compression on \(G \) iff \(J(e) = 0 \Rightarrow e \leq u - p \) holds for all \(e \in E \) \(^3\).

The unital group \(G \) always admits at least two compressions, namely the zero mapping, \(g \mapsto 0 \) for all \(g \in G \) and the identity mapping \(g \mapsto g \) for all \(g \in G \). Conversely, the only retraction on \(G \) with focus \(0 \) is the zero mapping, and the only retraction on \(G \) with focus \(u \) is the identity mapping. Suppose \(J \) is a retraction with focus \(p \) on \(G \). Then, \(J \) is idempotent \((\text{i.e., } J \circ J = J) \)
and \(J(p) = p \). Also, for all \(e \in E \), \(e \leq u - p \Rightarrow J(e) = 0 \) and, if \(J \) is a compression, then \(e \leq u - p \Leftrightarrow J(e) = 0 \) [3].

2.1 Lemma Let \(G \) be a unital group with unit \(u \) and unit interval \(E \). Suppose that \(J \) is a compression on \(G \) with focus \(p \), and \(J' \) is a retraction on \(G \) with focus \(u - p \). Then, for all \(g \in G^+ \), \(J(g) = 0 \Leftrightarrow J'(g) = g \).

Proof Let \(e \in E \). As \(0 \leq e \leq u \), we have \(0 \leq J'(e) \leq J'(u) = u - p \), whence \(J(J'(e)) = 0 \). Since \(E \) generates \(G \) as a group and \(J \circ J' \) is an endomorphism on \(G \), we have \(J(J'(g)) = 0 \) for all \(g \in G \). As \(J \) is a compression with focus \(p \), it follows that \(J(e) = 0 \Rightarrow e \leq u - p \Rightarrow J'(e) = e \). Now let \(g \in G^+ \) and write \(g = \sum_{i=1}^{n} e_i \) with \(e_i \in E \) for \(i = 1, 2, ..., n \). If \(J(g) = 0 \), then \(\sum_{i=1}^{n} J(e_i) = 0 \) and, since \(0 \leq J(e_i) \) for \(i = 1, 2, ..., n \), it follows that \(J(e_i) = 0 \) for \(i = 1, 2, ..., n \), whence \(J'(e_i) = e_i \) for \(i = 1, 2, ..., n \), and therefore \(J'(g) = g \). Conversely, if \(J'(g) = g \), then \(J(g) = J(J'(g)) = 0 \). \(\square \)

A compressible group is defined to be a unital group \(G \) such that (1) every retraction on \(G \) is uniquely determined by its focus, and (2) if \(J \) is a retraction on \(G \), there exists a retraction \(J' \) on \(G \) such that, for all \(g \in G^+ \), \(J(g) = 0 \Leftrightarrow J'(g) = g \) and \(J'(g) = 0 \Leftrightarrow J(g) = g \) [3]. Definition 3.3]. If \(G \) is a compressible group, then an element \(p \in G \) is called a projection if it is the focus of a retraction on \(G \). Suppose that \(G \) is a compressible group and \(P \) is the set of all projections in \(G \). Then every retraction on \(G \) is a compression, and if \(p \in P \), then the unique retraction (hence compression) on \(G \) with focus \(p \) is denoted by \(J_p \). The set \(P \) is a sub-effect algebra of \(E \) and, in its own right, it forms an orthomodular poset (OMP) [2] Corollary 5.2 (iii)].

2.2 Example Let \(A \) be a unital C\(^*\)-algebra and let \(G \) be the additive group of all self-adjoint elements in \(A \). Then \(G \) is a unital group with unit 1 and positive cone \(G^+ = \{ aa^* \mid a \in A \} \). The unital group \(G \) is a compressible group with \(P = \{ p \in G \mid p = p^2 \} \) and, if \(p \in P \), then \(J_p(g) = pgp \) for all \(g \in G \) [3]. \(\square \)

2.3 Theorem Let \(G \) be a compressible group with unit \(u \) and unit interval \(E \). Then: (i) \(P \) is a normal sub-effect algebra of \(E \). (ii) If \(p, q, r \in P \) with \(p + q + r \leq u \), then \(J_{p+r} \circ J_{q+r} = J_r \).

Proof (i) By [2] Corollary 5.2 (ii)], \(P \) is a sub-effect algebra of \(E \). Suppose \(e, f, d \in E \), \(e + f + d \leq u \), \(e + d \in P \), \(f + d \in P \), and define \(J := J_{e+d} \circ J_{f+d} \). Then \(J : G \rightarrow G \) is an order-preserving endomorphism and \(J(u) = \)
\[J_{e+d}(J_{f+d}(u)) = J_{e+d}(f + d) = J_{e+d}(f) + J_{e+d}(d). \] But, \(e + f + d \leq u \), so \(f \leq u - (e + d) \), and \(d \leq e + d \), whence \(J(u) = 0 + d = d \). Suppose \(h \in E \) with \(h \leq d \). Then \(h \leq e + d, f + d \), and it follows that \(J(h) = J_{e+d}(J_{f+d}(h)) = J_{e+d}(h) = h \). Therefore \(J \) is a retraction with focus \(d \), so \(d \in P \).

(ii) If \(p, q, r \in P \) and \(p + q + r \leq u \), then by the proof of (i) above with \(e \) replaced by \(p \), \(f \) replaced by \(q \), and \(d \) replaced by \(r \), we have \(J_{p+r} \circ J_{q+r} = J_r \).

3. Compression Bases

By Theorem 2.3, the notion of a “compression base,” as per the following definition, generalizes the family \((J_p)_{p \in P}\) of compressions in a compressible group.

3.1 Definition Let \(G \) be a unital group with unit interval \(E \). A family \((J_p)_{p \in P}\) of compressions on \(G \), indexed by a normal sub-effect algebra \(P \) of \(E \), is called a compression base for \(G \) iff (i) each \(p \in P \) is the focus of the corresponding compression \(J_p \), and (ii) if \(p, q, r \in P \) and \(p + q + r \leq u \), then \(J_{p+r} \circ J_{q+r} = J_r \).

The conditions for a unital group to be a compressible group are quite strong and they rule out many otherwise interesting unital groups. On the other hand, the notion of a unital group \(G \) with a specified compression base \((J_p)_{p \in P}\) is very general, yet most of the salient properties of projections and compressions for a compressible group generalize, mutatis mutandis, to the elements \(p \in P \) and to the compressions \(J_p \) in the compression base for \(G \).

3.2 Example A retraction \(J \) on the unital group \(G \) is direct iff \(J(g) \leq g \) for all \(g \in G^+ \) [Definition 2.6]. For instance, the zero mapping \(g \mapsto 0 \) and the identity mapping \(g \mapsto g \) for all \(g \in G \) are direct compressions on \(G \). Let \(P \) be the set of all foci of direct retractions on \(G \). Then \(P \) is a sub-effect algebra of the center of \(E \). Also, if \(p \in P \), there is a unique retraction \(J_p \) on \(G \) with focus \(p \), and \(J_p \) is a compression. Furthermore, the family \((J_p)_{p \in P}\) is a compression base for \(G \).

3.3 Standing Assumption In the sequel, we assume that \(G \) is a unital group with unit \(u \) and unit interval \(E \) and that \((J_p)_{p \in P}\) is a compression base for \(G \).

3.4 Theorem \(P \) is an orthomodular poset and, if \(p \in P \) and \(g \in G^+ \), then \(J_p(g) = 0 \Leftrightarrow J_{u-p}(g) = g \).
4.1 Definition

G

ibility in a compressible group [2, Definition 4.1] carries over, as follows, to

W

e maintain our standing assumption that (i.e.,

compatibility in a compressible group genera-

le to a unital group with a compression base.

4.2 Lemma

4.3 Lemma

Proof

Proof
4.3 Theorem Let \(p, q \in P \). Then the following conditions are mutually equivalent: (i) \(J_p \circ J_q = J_q \circ J_p \). (ii) \(J_p(q) = J_q(p) \). (iii) \(J_p(q) \leq q \). (iv) \(p \) is Mackey compatible with \(q \) in \(E \). (v) \(p \) is Mackey compatible with \(q \) in \(P \). (vi) \(\exists r \in P, J_p \circ J_q = J_r \). (vii) \(J_p(q) \in P \). (viii) \(qCp \)

Proof (i) \(\Rightarrow \) (ii). If (i) holds, then \(J_p(q) = J_p(J_q(u)) = J_q(J_p(u)) = J_q(p) \).

(ii) \(\Rightarrow \) (iii). If (ii) holds, then \(J_p(q) = J_q(p) \leq q \).

(iii) \(\Rightarrow \) (iv). Let \(r := J_p(q) \) and assume that \(r \leq q \). Then \(0 \leq r \leq p, q \), whence \(e := p - r \in E \) and \(f := q - r \in E \) with \(e + r = p \) and \(f + r = q \). As \(J_p(f) = J_p(q-r) = r-r = 0 \), we have \(f \leq u-p \), whence \(e+f+r = f+p \leq u \), and it follows the \(p \) is Mackey compatible with \(q \) in \(E \).

(iv) \(\Rightarrow \) (v). As \(P \) is a normal sub-effect algebra of \(E \), we have (iv) \(\Rightarrow \) (v).

(v) \(\Rightarrow \) (vi). If (v) holds, there exist \(e, f, r \in P \) with \(e+f+r \leq u, p = e+r \) and \(q = f + r \). Therefore, by Definition 3.1 (ii), \(J_p \circ J_q = J_{e+r} \circ J_{f+r} = J_r \).

(vi) \(\Rightarrow \) (vii). Suppose that \(r \in P \) and \(J_p \circ J_q = J_r \). Then \(J_p(q) = J_p(J_q(u)) = J_r(u) = r \in P \).

(vii) \(\Rightarrow \) (viii). Assume (vii) and let \(r := J_p(q) \). Then \(J_r(q) \leq r \leq p \), so \(0 \leq r - J_r(q) \). Thus, by Lemma 3.5, \(r - J_r(q) = r - (J_r \circ J_p)(q) = r - J_r(J_p(q)) = r - J_r(r) = r-r = 0 \), i.e., \(r = J_r(q) \). Therefore, \(J_r(u-q) = r-r = 0 \), so \(u-q \leq u-r \), i.e., \(r \leq q \), and it follows from Lemma 4.2 that \(pCq \).

(viii) \(\Rightarrow \) (i). Assume that \(qCp \). Then, by Lemma 4.2, \(J_p(q) \leq q \), so (iii) holds. We have already shown that (iii) \(\Rightarrow \) (iv) \(\Rightarrow \) (v), so there exist \(e, f, r \in P \) with \(e+f+r \leq u, p = e+r \), and \(q = f + r \). Therefore, by Definition 3.1 (ii), \(J_p \circ J_q = J_{e+r} \circ J_{f+r} = J_r \), and \(J_p \circ J_q = J_p \).

Because conditions (i), (ii), (iv), and (v) in Theorem 4.3 are symmetric in \(p \) and \(q \), so are conditions (iii), (vi), (vii), and (viii). In particular, for \(p, q \in P \), we have \(pCq \Leftrightarrow qCp \).

4.4 Corollary Let \(p, q \in P \) and suppose that \(pCq \). Then \(J_q(p) = J_p(q) = p \wedge q \) is the greatest lower bound of \(p \) and \(q \) both in \(E \) and in \(P \), and \(J_p \circ J_q = J_q \circ J_p = J_{p \wedge q} \).

Proof Suppose that \(p, q \in P \) and \(pCq \). By Theorem 4.3, there exists \(r \in P \) with \(J_p \circ J_q = J_q \circ J_p = J_r \). Thus, \(r = J_p(J_q(u)) = J_q(q) = J_q(p) \leq p, q \).

If \(e \in E \) with \(e \leq p, q \), then \(e = J_p(J_q(e)) = J_r(e) \leq r \), so \(r \) is the greatest lower bound of \(p \) and \(q \) in \(E \), hence also in \(P \).

4.5 Theorem Let \(v \in P \) and define \(H := J_v(G) \), \(E_H := \{ e \in E \mid e \leq v \} \), and \(P_H := \{ q \in P \mid q \leq v \} \). For each \(q \in P_H \), let \(J_q^H \) be the restriction of \(J_q \)
to H. Then: (i) With the induced partial order, $H = \{ h \in G \mid h = J_v(h) \}$ is a unital group with unit v and unit interval $H \cap E = E_H$. (ii) $H \cap P = P_H$, and if $q \in P_H$, then J^H_q is a compression on H. (iii) P_H is a normal sub-effect algebra of E_H. (iv) $(J^H_q)_{q \in P_H}$ is a compression base for H.

Proof (i) By [2, Lemma 2.4], H is a unital group with unit v and unit interval $H \cap E$. As J_v is idempotent, $H = \{ h \in G \mid h = J_v(h) \}$. Thus, for $e \in E$, $e \leq v \iff e = J_v(e) \iff e \in H$, whence $H \cap E = \{ e \in E \mid e \leq v \}$.

(ii) As $P \subseteq E$, we have $H \cap P = P_H$. If $h \in H$ and $q \in P_H$, then by Lemma 3.5, $J_q(h) = J_v(J_q(h)) \in H$. Therefore $J^H_q : H \to H$ is an order-preserving group endomorphism, and by Lemma 3.5 again, $J^H_q(v) = J_q(v) = q$. Also, if $e \in E_H$ with $e \leq q$, then $J^H_q(e) = J_q(e) = e$, so J^H_q is a retraction on H. Suppose $e \in E_H$ and $J^H_q(e) = 0$. Then $e \leq u - q$, so $e + q \leq u$. By [3, Lemma 2.3 (iv)], v is a principal element of E, hence, since $0 \leq e, q \leq v$, it follows that $e + q \leq v$, i.e., $e \leq v - q$. Therefore, J^H_q is a compression on H.

(iii) Suppose $e, f, d \in E_H$, $e + f + d \leq v$, and $e + d, f + d \in P_H$. Then $e, f, d \in E$, $e + f + d \leq v \leq u$, and $e + d, f + d \in P$. As P is a normal sub-effect algebra of E, it follows that $d \in P$. But $d \leq v$, so $d \in P_H$.

(iv) Suppose $s, t, r \in P_H$ with $s + t + r \leq u$. Then $s, t, r \in P$ with $s + t + r \leq u$, whence $J_s \circ J_t \circ J_r = J_{s + t + r} = J_v$, and it follows that $J^H_{s + t + r} = J^H_v$.

4.6 Theorem Let $v \in P$ and define $C := C(v)$. For each $s \in C \cap P$, let J^C_s be the restriction of J_s to C. Then: (i) With the induced partial order, C is a unital group with unit v and unit interval $C \cap E = \{ e + f \mid e, f \in E, e \leq v, f \leq u - v \}$. (ii) If $s \in C \cap P$, then J^C_s is a compression on C. (iii) $C \cap P$ is a normal sub-effect algebra of $C \cap E$. (iv) $(J^C_s)_{s \in C \cap P}$ is a compression base for C.

Proof Part (i) follows from [2, Lemma 4.2 (iv)], part (iii) is obvious, and part (iv) is easily confirmed once part (ii) is proved. To prove part (ii), assume that $g \in C = C(v)$ and $s \in P \cap C$. Then, by Lemma 3.5, $J^C_s(g) = J_s(J_v(g) + J_u-v(g)) = J_s(J_v(g)) + J_s(J_u-v(g)) = J_v(J_s(g)) + J_u-v(J_s(g))$, so $J^C_s(g) = J_s(g) \in C(v) = C$. Therefore $J^C_s : C \to C$ is an order-preserving group endomorphism, hence it is obviously a compression on C.

4.7 Definition If C and W are unital groups with units u and w, respectively, and if $(J^C_q)_{q \in Q}$ and $(J^W_t)_{t \in T}$ are compression bases in C and W, respectively, then an order-preserving group homomorphism $\phi : C \to W$ is called a morphism of unital groups with compression bases if $\phi(u) = w, \phi(Q) \subseteq T$, and $J^W_{\phi(q)} \circ \phi = \phi \circ J^C_q$ for all $q \in Q$.

7
We omit the straightforward proof of the following theorem.

4.7 Theorem Suppose \(v \in P \) and define \(H := J_v(G) \), \(K := J_{u-v}(G) \), and \(C := C(v) \). Organize \(H \), \(K \), and \(C \) into unital groups with compression bases \((J^H_q)_{q \in P_H} \), \((J^K_r)_{r \in P_K} \), and \((J^C_s)_{s \in C \cap P} \), respectively, as in Theorems 4.5 and 4.6. Let \(\eta \) be the restriction to \(C \) of \(J_v \) and let \(\kappa \) be the restriction to \(C \) of \(J_{u-v} \). Then \(\eta: C \to H \) and \(\kappa: C \to K \) are surjective morphisms of unital groups with compression bases and, in the category of unital groups with compression bases, \(\eta \) and \(\kappa \) provide a representation of \(C \) as a direct product of \(H \) and \(K \).

In subsequent papers we shall prove that all of the major results in [2, 3, 4, 5] can be generalized to unital groups with compression bases.

References

