REMOTE SHIFTING AT THE CLEO EXPERIMENT

H. Schwarthoff, T. Wilksen*, LEPP Cornell University, Ithaca, NY 14853, USA

Abstract

The CLEO III data acquisition was from the beginning in the late 90’s designed to allow remote operations and monitoring of the experiment. Since changes in the coordination and operation of the CLEO experiment two years ago enabled us to separate tasks of the shift crew into an operational and a physics task, existing remote capabilities have been revisited. In 2002/03 CLEO started to deploy its remote monitoring tasks for performing remote shifts and evaluated various communication tools e.g. video conferencing and remote desktop sharing. Remote, collaborating institutions were allowed to perform the physicist shift part from their home institutions keeping only the professional operator of the CLEO experiment on site. After a one year long testing and evaluation phase the remote shifting for physicists is now in production mode.

This paper reports on experiences made when evaluating and deploying various options and technologies used for remote control, operation and monitoring e.g. video conferencing tools by shift crews are being discussed.

MOTIVATION

High Energy Physics Experiments traditionally are carried out by collaborations which often consist not only of residential but also of national and international member institutions. The inherent distributed structure of collaborations manifests itself in frequent traveling of collaboration members between home institutions and the site where the detector is located to run shifts on the experiment. In the context of the rapidly emerging information technologies the desire for conducting shifts far away from an experiment has increased in recent years.

A second important aspect of collaborations is that building a large scale high energy physics experiment typically splits up in parts. The design, manufacturing and implementation of these gets distributed to remote institutions which have the necessary expertise to contribute the required parts. As a consequence remote institutions are in charge of maintaining and monitoring the specific parts often for the life time of the experiment. To simplify these tasks the detector needs to have remote capabilities for monitoring and troubleshooting subsystems on a software as well as on a hardware level.

CLEO implemented many remote capabilities when the detector was upgraded to CLEO III [1] in the late ’90s and in 2003 to CLEO-c. Next to remotely controllable power supplies and environment sensors for all front end read out crates the software to run the CLEO data acquisition system [2] was designed to be operated from a remote site. Using Java for all graphical user interfaces (Gui) and CORBA [3] for the control and communication layer made this possible. Although not used to a large extent during commissioning of the CLEO III detector these features have been revisited recently.

When the CLEO experiment started to hire professional shifters in early 2001 the coordination and operation of the CLEO experiment was overhauled. Specifically the tasks of the shift crew - two persons at CLEO - were separated into a professional shifter and a physicist shifter one. The professional shifter, also called CLEO operator, is in charge of operating the data acquisition system and various other detector support systems like gas systems or the cooling system. The physicist shifter is responsible for ensuring the physics data quality as well as the detector performance. Both tasks are in general complementary, however some redundancy in critical system variables is built into the shifter procedures.

This logical separation of tasks made it possible to implement the idea of remotely conducted physicist shifts. The hired professional shifters are on site, whereas the collaborating physicists to a large fraction of the year are not. Remote shifts supposed to have several advantages: reduction of travel costs is certainly one, but also it allows collaborators to stay at their home institutions and follow their daily routine while still being able to participate in the ongoing experiment.

The following chapters will illustrate what approaches have been made to make use of existing features of the CLEO data acquisition as well as on how to implement video conferencing tools for detector shifts at CLEO.

IMPLEMENTATION

Tools for the Physicist Shifter

As a requirement for remote shifts the physicist must have the same or at least a comparable tool set available remotely as he would have in the CLEO counting room on site.

Most CLEO data acquisition user interfaces are implemented as Java graphical user interfaces (Gui) or web browser interfaces. One important tool is the Sessionman-
ager, which acts as a desktop for running all application
GuIs for monitoring and controlling the detector readout.
Another tool is the online event display based on a Tcl/Tk
implementation. Both applications - Sessionmanager and
event display - are running on site on two PCs located in
the CLEO counting room. For monitoring support systems
and status information a couple of web interfaces are avail-
able complemented by an electronic logbook which is con-
ected to the CLEO operator's main electronic logbook.

CORBA’s IIOP–over–HTTP

Since the CLEO III data acquisition system was de-
dsigned by using Borland’s CORBA product suite Visibro-
ker [3] as a communication layer between system compo-
nents, it was obvious to make use of Visibroker's IIOP-
over-HTTP gateway. It allows to run CORBA enabled
clients by means of a web browser interface connecting to
the data acquisition system from basically anywhere.

As shown in Fig. 1 a gatekeeper relays the CORBA calls
from within the system environment to the client and vice
versa. IIOP is used internally as protocol whereas outside
the experiment site IIOP is hooked upon standard HTTP
protocol. The client can be either a Java applet running
inside a web browser or a native Java application for which
the code has to be installed beforehand.

X11 and SSH

Instead of utilizing CORBA for the communication to
the remote client we also evaluated the old and venerable
solution to transfer local displays by means of the X11 pro-
tocol. This is in general an easy to set up protocol given
the fact that the UNIX platform is well-known and used
in High Energy Physics communities. Using X11 applica-
tions are a standard procedure at most institutions and
universities.

Because all online CLEO data acquisition system com-
puters are located on a private network segment and there-
fore not visible to the Internet, a gateway connecting both
had to be chosen. This gateway was running a local copy of
the Sessionmanager and a copy of the online event display.
Remote shifters simply logged on to this host using a termi-
nal emulation program based on the Secure Shell protocol
(SSH) [6] and forwarded the X11 display to their machine.

VNC and SSH

A third approach – similar to the one before – was to
use the Virtual Network Computing (VNC) [7] protocol
for transferring local displays. Since two PCs were already
used locally for running the event display, on each of them
a separate VNC server was installed. For VNC various im-
plementations are available. Next the to original VNC one,
RealVNC [7], there's a lightweight version TightVNC [8]
available, which is being used at CLEO now.

The VNC server on the PC running the Sessionmanager
allows limited operation for starting Gui applications or re-
move expert control (no program installations are allowed
e.g.). The second one displaying the online event display
does only transfer the actual screen image but doesn't per-
mit any control of the local PC.

On the remote site several platforms are supported. In
general all operating systems for which a VNC version ex-
sts are capable of running the remote displays. For Win-
dows 2000/XP the Windows TightVNC version is used to-
gether with the terminal program putty [9] which enables
SSH tunneling for the VNC traffic. On Linux vncviewer
– part of the VNC package – is used, which has in newer
versions a useful option -via. This option automatically en-
ables SSH tunneling for VNC. Hence setting up the remote
CLEO environment is reduced to an one-line-command for
each of the tools and starting up a web browser.

Video Communication

To facilitate communication between the on site CLEO
operator and the remote physicist shifter we used a video
conferencing tool. Though there are a couple of commercial solutions available CLEO decided to go with a in the High Energy Physics community rather popular product named VRVS [4]. This tool is also being used for CLEO collaboration meetings hence there was and is sufficient interest by remote collaborators to establish VRVS at their home institutions.

A standard setup consists of a Windows or Linux PC with Java and VRVS installed. Speaker and a microphone as well as a suitable headset were available on both ends. Mostly off-the-shelves web cameras were used together with the MBone tools VRVS is providing namely VIC and RAT [5].

EXPERIENCES

Technical Aspects

The first approach using Visibroker’s IIOP-over-HTTP feature with the gatekeeper would have been the most elegant solution. However when we started deploying CLEO’s remote capabilities most of the online data acquisition code was still using Visibroker version 3.0 on all three platforms. For these versions the gatekeeper wasn’t supporting local firewall configurations very well. Additional packages supporting e.g. SSL are only available with recent Visibroker versions and typically rather complex to configure.

A second issue of the CORBA approach was, that either the native Java code for the CLEO Session manager had to be installed on the remote host or a web browser had to run the Java applet. The latter turned out to be not working sufficiently due to the variety of available browser types. The native Java application worked only after adapting the code to accommodate platform-specific issues. We had no access to the remote machines and relied mostly on the corresponding physicist shifter regarding the installation and troubleshooting process. Remote assistance was often difficult to provide given the fact that most physicists are not necessarily computer experts nor do they have sufficient privileges and knowledge to install software on their computers.

The solution using X11 was known to be working since this is a standard technique in our community. This was only a temporary solution to explore how well X11 does. Even with dedicated Internet connections running a native Java application on one of the older Solaris nodes required a significant amount of patience by the remote shifter.

VNC is using a compression algorithm which turned out to be excellent for the type of applications CLEO is using. Not only is it easy to setup on UNIX/Linux nodes but also the compression is that good that one can watch the online event display on a standard DSL/Cable modem connection at similar rates compared to those one encounters on the display in the CLEO counting room.

An example view of one of the CLEO remote session is shown in Fig. 4.

Sociological Aspects

Looking at non-technical aspects of the remote shifting project there are few topics to be mentioned. Physicists in the High Energy Physics community tend to be open to new and innovative ideas, the hired, professional operators are not necessarily. The presence of a web camera in the CLEO counting room irritates professional shifters. Though it has been turned on only during remote shifts, web cameras got taped, disconnected and even hidden in drawers.

As revealed elsewhere in studies on video conferencing the audio channel turns out to be essential. Often the phone
CONCLUSION

The physicists in the CLEO collaboration welcomed the possibility of remote shifts. It is now in production mode since more than one year and is being used by an increasing number of collaborators. Initial attempts to use a CORBA enabled implementation of remote access were dropped in favor of a more simple and reliable solution using SSH and the VNC protocol.

For running the remote tools used by the physicist it is necessary to have at least two screens, better three at hand to successfully monitor the CLEO data taking process. Improved and more efficient monitoring tools in the future might enable us to run physicist shifts even from a single laptop on the road.

ACKNOWLEDGMENTS

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, and the Texas Advanced Research Program.

REFERENCES

[3] CORBA Visibroker 3.x/5.x
 http://www.borland.com/bes/visibroker/
 http://www.vrvs.org
 http://www-nrg.ee.lbl.gov/vic/
 http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/index.html
[6] Secure Shell SSH
 http://www.openssh.org
 http://realvnc.com
 http://www.tightvnc.com
[9] SSH implementation for Windows platform – Putty
 http://www.chiark.greenend.org.uk/ sgtatham/putty/