THE 191,193Hg AND 191,193Au POSITRON DECAYS

Ch. Vieu**, J.S. Dionisio**, V. Berg** and C. Bourgeois**
* C.S.N.S.M. (IN2P3) Lab. S. Rosenblum, 91406 Orsay, FRANCE
** Institut de Physique Nucléaire, 91406 Orsay, FRANCE

Abstracts.

The positron spectra emitted by 191Hg, 193Hg and their decay products were analyzed with a Gerholm-Lindskog 8 spectrometer automatically operated. From the analysis of the Fermi-Kuri diagrams, the total decay energies of 191,193Hg and 191,193Au were deduced.

1. Introduction

In the present study, the positron spectra emitted in 193Pt$^{+193m}$Hg \rightarrow 193Au + 193Pt and 193Hg \rightarrow 191Au + 193Pt decays were measured with a Gerholm-Lindskog 8 spectrometer. This spectrometer (resolution and transmission $\approx 3\%$) was operated with a twisted baffle, a scanning magnetic field device [1] and an improved magnetic shielding [2]. In such way, radioactive corrections are admitted as well as spectral distortion due to the stray magnetic field at the photomultiplier. All Hg samples used in these measurements were isotopically separated [3,4].

The Fermi-Kuri plots of the positron spectra were obtained using relativistic Fermi functions corrected for atomic screening FOLO [5]. The different components were interpreted according to the observed half-lives, the experimental Hg, Au and Pt level schemes and intensity balance data.

2. The 193Hg and 193Au positron spectra

The high energy component of this complex spectrum decays with the half-life of 193Hg ($T_{1/2}(^{193}$Hg$) = 3.8 \pm 0.15 h$; $T_{1/2}(^{193}$Hg$) = 11.8 \pm 0.2 h$ [3]). From the analysis of the transition intensities balance of 193Au, this pure high energy component can be attributed to the decay of 193Hg 3/2$^+$ state towards the 3/2$^+$ excited level of 193Au. The intensity of this 3^+ component can be evaluated from its end point energy ($E_{\text{max}} = 1287 \pm 15$keV), the relative electron capture plus positron feedings of 193Au levels and the BC/β^+ ($= 37$) theoretical ratio [5]. The intensity obtained in this way corresponds to $7.8 \pm 0.7 \beta^+$ emitted for 103 desintegrations of 193Hg.

The low energy positron spectrum decays with the 193Au half-life ($T_{1/2} = 17.5 h$). Two components are brought into evidence by the Fermi-Kuri analysis. On account of the energy difference between their end point energy, they populate the 1/2$^+$ and 3/2$^+$ levels in 193Pt. A possible third component could populate the 3/2$^+$ level. However, due to the energy loss or scattering in the sample and vacuum chamber and the iron hysteresis optical aberrations, this low energy component cannot be satisfactorily resolved.

Finally, the experimental Q values obtained in the present study are slightly higher than Wapstra-Dove predictions $Q(193$Hg$ \rightarrow 193Au) = 2340$ and $Q(193$Au$ \rightarrow 193Pt) = 1000$ keV [6].

3. The 193Hg and 191Au positron spectra

The Fermi-Kuri plot of this complex spectrum is very similar to the previous one. Indeed a pure high energy component is brought in evidence and follows the 191Hg decay ($T_{1/2} = 31$ mn). According to intensity balance measurements [7], this high energy component corresponds to the decay of 3/2$^+$ excited state of 191Hg towards the 3/2$^+$ excited level of 191Au. The low energy positron spectrum follows the 191Au \rightarrow 191Pt decay ($T_{1/2} = 3.2 h$). For similar experimental reasons previously quoted, only two components of this complex low energy spectrum can be resolved. They populate the 3/2$^+$ groundstate and 1/2$^+$ (283.9 keV) excited level in 191Pt.

![Fig.1 - Positron spectrum emitted by 193Hg and 193Au](image_url)
Finally, the experimental Q values measured for $^{191}\text{Hg} \rightarrow ^{191}\text{Au}$ and $^{191}\text{Au} \rightarrow ^{191}\text{Pt}$ decays agree quite well with the corresponding predictions of Wapstra-Gove (Q($^{191}\text{Hg} \rightarrow ^{191}\text{Au}$) = 3300 keV and Q($^{191}\text{Au} \rightarrow ^{191}\text{Pt}$) = 1900 keV).

References

7. A. Högland, private communication.