COMPARATIVE YIELDS OF ALKALI ELEMENTS AND THALLIUM FROM URANIUM IRRADIATED WITH HIGH-ENERGY PROTONS, 4He and 12C.

The ISOLDE Collaboration, CERN, Geneva, Switzerland

Abstract

Mass-separated ion beams of the alkali elements Na, K, and Fr, and of the element Tl were produced by bombarding a uranium target with 600 MeV protons, 890 MeV 4He+, and 936 MeV 12C+ ions. Isotopic production yields are reported. In the case of the 12C beam these are thick target yields. Absolute cross-sections for the proton-beam data were deduced by normalizing the delay-time corrected yield curves to measured cross-sections. For products farthest away from stability the 4He+ beam generally gives the highest yields.

1. Introduction

The present work was initiated by the new possibilities of accelerating heavy ions at the CERN Synchrocyclotron (SC). In addition to the 600 MeV proton and 910 MeV 4He+ beams, the SC is also able to accelerate 12C+ ions to an energy of 860 MeV. Since neutron emission usually is favoured relative to the emission of charged particles, the heavy-ion reactions may be suitable for the production of a variety of very neutron-deficient nuclides of Z higher than the target element. The purpose of the present experiment was, however, to investigate the production of nuclei lighter than the target and to see if the more complex projectiles have higher cross-sections so as to broaden significantly the isotopic-yield distributions.

A survey of comparative yield measurements for the elements Na, K, Tl, and Fr, produced by bombardment of 12 g U/cm2 targets, was carried out at ISOLDE. The 12C ions are completely stopped in such thick targets, and therefore these measurements are thick target yields. Relative to protons and 4He, the effective target thickness is thus reduced considerably. Here we shall discuss some aspects of the utilization of heavy ions for the production of rare nuclear species.

2. Experimental techniques

Data for the available projectiles at ISOLDE from the CERN 212 cm Synchrocyclotron are summarized in Table 1. The beam intensities were measured by a secondary emission chamber which was calibrated against the reaction 7Al(X,xy)n 2Na.

The reaction products separated in the ISOLDE electromagnetic mass separator were brought through a beam-handling system onto a movable aluminized mylar tape. The collected activity was transferred to a thick, 40 mm diameter, 4π plastic scintillator, where the β-particles were counted. The detection efficiency of this detector was measured by means of standard β sources. The 4π plastic scintillator was also used for the Tl isotopes, which decay by isomeric transition or electron capture. In these cases, the absolute yields are estimated to be uncertain by a factor of 2 to 3 owing to the different efficiency of the β detector. The relative yields for the different projectiles are, however, not affected. For the detection of α-particles, silicon surface barrier detectors were used, either placed in the beam behind a carbon collector foil or in combination with a tape-transport system. The neutron-rich nuclides, which are characterized by the emission of β-delayed neutrons, were identified with a 4π neutron counter calibrated with a 48 g sample of uranium. For a few nuclides the gamma-rays were measured with a 17% Ge(Li) standard efficiency detector. The observed counting rates were corrected for decay losses by using the formula presented in Bjørnstad et al. in order to obtain the saturation yields. To eliminate the effect of short-time variations in the bombarding beam intensity and the separator efficiency, most of the yields were obtained as ratios between two adjacent masses. The determined saturation yield ratios were then normalized to one absolute yield measurement for each element.

3. Results

The presented production yields from the proton and 4He irradiations are normalized to a beam intensity of 1 puA and a target thickness of 10 g U/cm2, i.e. thin target yields. Since the 12C beam is completely stopped in the target, its saturation yields are thick target yields normalized to 1 puA. The proton-beam results are shown in Figs. 1-4. The isotopic distributions, shown in these figures, reveal within the experimental accuracy no structure due to odd-even effects. The Fr and Tl yields have their maxima at the neutron-deficient side of stability as expected for spallation products. The yields for Na and K are peaked at the neutron-rich side, but closer to the stability line in accordance with the fragmentation model. The yields from the 4He and 12C irradiations are presented in Figs. 5-12 as ratios to the proton-induced yields. The presented distributions will be further discussed in Section 4. The yields depend very strongly on the performance of the actual target-ion source system and, in order to keep the experimental conditions approximately the same, the presented data for p and 4He were obtained by using the same target unit. The performances of various targets due to temperature differences mainly affect the short-lived nuclides because of their strong sensitivity to decay losses in the target. Occasionally 10-100 times higher yields have been observed for these nuclides. This means that precise cross-section measurements are difficult to

Table 1
Summary of beam data at the ISOLDE target

<table>
<thead>
<tr>
<th>Projectile</th>
<th>Beam intensity (puA)</th>
<th>Incident beam energy (MeV)</th>
<th>Energy loss in target (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>3</td>
<td>600</td>
<td>30</td>
</tr>
<tr>
<td>4He+</td>
<td>0.5</td>
<td>890</td>
<td>200</td>
</tr>
<tr>
<td>12C+</td>
<td>0.1</td>
<td>936</td>
<td>936</td>
</tr>
</tbody>
</table>

a) 1 puA = 1 particle micromampère = 6.24 x 10^{12} particles/s.

* Present address: Department of Nuclear Chemistry, University of Oslo, Oslo, Norway.
** Present address: Department of Physics, University of Helsinki, Helsinki, Finland.
† Present address: Lawrence Berkeley Laboratory, Berkeley, Calif., USA.
perform at an on-line separator like ISOLDE but it is very suitable for relative yield measurements. It may be interesting to estimate approximate cross-sections far away from stability, since it is very difficult to get this information from other techniques than on-line measurements. In order to obtain absolute formation cross-sections, the saturation yields have to be corrected for decay losses in the target. The parameter μ for the diffusion mechanism(s) in solids, described in Carraz et al.,10 was fitted to the experimentally measured diffusion curve for Na, thus giving a value of $0 = 5$.11 Earlier results from on-line measurements$^{12-14}$ show that the same μ value is roughly applicable also for K and Fr. The diffusion time for Tl was not measured for the actual target system, but earlier experiments have shown that it is much longer than for the alkalis and therefore the Tl yields were not corrected for delay in the target. The delay-corrected yields were then related to cross-sections measured by radiochemical methods$^{15-17}$. The cross-sections given in Figs. 1, 2, 11 are determined to a precision of a factor of 2 to 3, depending on the uncertainties in the decay-time corrections and the normalizations across-sections.

4. Discussion

For the fragmentation product Na, the yield ratios in Figs. 5-6 show that both 4He and 12C give a higher yield at the neutron-deficient as well as the neutron-rich side of the distributions. The higher yields are tentatively understood in terms of higher energy deposition in the target nucleus. For production purposes the 3He beam will become even more attractive in the near future because a beam intensity of the same order as the proton beam is within reach at the SC. An unexpected high yield was observed for 21Na with 12C as projectile. To investigate if this could be attributed to the reaction 12C on carbon in the target, a separate experiment with 12C on a pure graphite target was performed. The result obtained was in agreement with integration of the 30 to 80 MeV 12C on 12C data18,19 showing that the 21Na is produced near the end of the range of the beam in the target. The argument above to the possibility of performing such reactions in thick targets, which may be interesting in order to produce neutron-deficient nuclei in the region $Z < 20$ where suitable high-temperature targets for proton and 4He bombardment are hard to find. In the 12C on 12C experiment a small contribution at masses $A > 24$ was also observed, originating from reactions with the Ta target container.

The ratios for the fragmentation product potassium, K, are shown in Figs. 7-8. The trend of higher yields of the 3He and 12C irradiations is not as pronounced as for Na, but still there is a gain in yield at both the neutron-deficient and neutron-rich sides of the isotopes. The argument for the Na ratios is also applicable in this case to explain the higher yields produced in the 3He and 12C irradiations.

For the deep spallation product Tl, higher yields are expected when using 3He or 12C as projectiles instead of protons, because the higher total energy transferred to the system favours the evaporation of many particles. The effect is shown in Figs. 9-10. The experimental ratio illustrated in Fig. 9 shows that the yields for $A < 187$ are 10 to 100 times higher from 3He than from protons. When using 12C instead of protons as projectiles the effect is not that pronounced but still there is a gain in yield, as shown in Fig. 10. The measurements of the Tl isotopes were not extended to the neutron-rich side of stability because of contamination from the isobaric Fr isotopes.

In the case of the close spallation product Fr, Figs. 11-12, the higher bombarding energy of the 3He and 12C beams disfavours the yields. This is analogous to the case where the proton energy is increased from medium to high energy, where the cross-section decreases for close spallation products but increases for deep spallation and fragmentation processes. In the Fission region the cross-section is rather unaffected by the higher bombarding energy in agreement with observations for Cs and Rb isotopes produced in 910 MeV 3He irradiations.13 For the most neutron-deficient nuclides, shown in Fig. 11, there is a gain by using 3He as projectiles, while nuclides closer to stability are disfavoured. This gives, because of contamination from neighbouring masses in the separator cleaner conditions when studying nuclear properties in the very-light Fr isotopes. The low ratio shown in Fig. 12 is not only a consequence of the reaction mechanism but also an effect of the small effective target thickness for 12C, while the proton and 3He yields are thin target yields.

During the 12C experiment an attempt was made to produce elements heavier than the target. The effort was to produce Am isotopes by irradiating 12C-graphite with 12C, which involves a transfer of three protons to the target nucleus. In this experiment a thermal ion source was used. The detection system was optimized to measure both alpha and fission-fragment energies. The most typical characteristic of the Am isotopes would be spontaneous fission, but no such events were observed. It is possible that relatively high-temperature stable Am compounds were formed, thus preventing the release of Am from the target. However, some weak alpha peaks were observed in the expected region of energy for Am. Assigning these alpha peaks to Am, an estimated upper limit of 30 μb for the production of 237Am could be made, which roughly agrees with the data obtained by a low-energy 3He beam.11

The present work shows that the results obtained with the 3He beam are very encouraging and higher production yields are established, especially for the deep spallation and fragmentation products. For production purposes the 3He beam will become even more attractive with the planned higher beam intensity. The 12C beam seems to offer no advantage for production of elements lighter than the target. The higher energy available does not compensate for its low intensity and shorter range as compared to 3He and protons.

References

17) The ISOLDE Collaboration, The 3K beta-strength function, to be published in Phys. Lett. B.

Fig. 1 Production yields of Na isotopes. Filled circles are normalized saturation yields (see text). The P_0 values used are normalized to the new P_0 value for 7Li of $(50 \pm 4)\%$. The cross-section scale on the right-hand axis is normalized to 0.19 mb measured for 23Na. This scale applies to the decay-corrected yields (open circles) according to the text. The points at masses 33 and 34 are within parentheses because the correction for the daughter activities is not taken into account.

Fig. 2 Production yields of K isotopes. See caption of Fig. 1. The P_0 values used are taken from Ref. 17. The cross-section scale is normalized to 0.35 mb for 40K, assuming the same cross-section at the maximum of the yield distribution as that measured for Sc.

Fig. 3 Production yields of Tl isotopes. See caption of Fig. 1. No decay correction is applied to the points (see text). The letters m, n, g indicate the metastable and the ground state, respectively. The same detection efficiency as for beta particles was used.

Fig. 4 Production yields of Fr isotopes. See caption of Fig. 1. The cross-section scale is normalized to 0.20 mb measured for 212Fr. The error bars are from the uncertainties in the μ value and the normal temperature variations of the target.
Fig. 5 Ratios of the 3He to the proton-induced saturation yields of Na isotopes normalized to the same beam intensity.

Fig. 6 Ratios of the 12C to the proton-induced saturation yields of Na isotopes normalized to the same beam intensity.

Fig. 7 Ratios of the K isotopes. See caption of Fig. 5.

Fig. 8 Ratios of the K isotopes. See caption of Fig. 6.

Fig. 9 Ratios of the Tl isotopes. See caption of Fig. 5. For the letters m and g see caption of Fig. 3.

Fig. 10 Ratios of the Tl isotopes. See caption of Fig. 6. For the letters m and g see caption of Fig. 3.
Fig. 11 Ratios of the Fr isotopes. See caption of Fig. 5.

Fig. 12 Ratios of the Fr isotopes. See caption of Fig. 6.