FIRST OBSERVATION OF 162Hf DECAY: COMPLETION OF AN α-DECAY CHAIN

Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada K0J 1J0

Abstract

The new isotope 162Hf ($T_{1/2} = 37.6 \pm 0.8$ s) was produced in a 142Nd (24 Mg; 14 n) reaction. The activities produced in this reaction were transported to a measuring station by use of a He-jet system. Decay properties were observed with α-, γ-, β-, and γ-γ-spectroscopy. The Z-assignment of the new isotope was based on a cross bombardment on 144Pr target and on the results of a γ-γ-ray coincidence measurement. The mass assignment was deduced from excitation function measurements. From the measured α-decay energy $E_\alpha = 4308 \pm 10$ keV new mass values were derived for 162Hf, 166W, 170Os, 174Pt, and 178Hg. These new mass values make it possible to establish systematics of two-proton and one-proton binding energies far from stability.

I. Introduction

During the last decade new heavy ion beams have made possible detailed studies of neutron-deficient isotopes in the medium-weight mass region. For the very neutron deficient isotopes between the rare earth and the lead region, α-emission has been shown to be the predominant decay mode. Since the detection of α-particles offers a convenient method of establishing decay properties of new isotopes, many new α-emitters have been studied. Their spectroscopic properties have been reviewed some time ago by Gauvin et al. [1] and more recently by Rytt [2] and Toth [3].

By studying chains of Q_α-values and linking these chains to known mass values (usually close to stability) it has been possible to extend the known masses to exotic nuclei [4]. While in general it is possible that the α-decay doesn't feed the daughter ground state, this does not occur for chains of α-emitters consisting of only even-even nuclei since the $0^+ \rightarrow 0^+$ ground state α-branch is always by far the strongest transition.

There are two fairly long chains of even-even α-emitter in the medium-mass region based on the $N = 82$ isotones 146Gd and 148Dy. Recently, the 148Dy chain was linked to stable masses values by Spanier et al. [5] and Schmidt-Ott et al. [6] who determined the mass of 148Dy by measuring the ratio of EC/γ for its 8^+-decay. The 146Gd chain was linked to stable mass values by Fardo et al. [7] and Alford et al. [8] by determining the mass of 146Gd via reaction Q-values. Decay studies of 146Gd and 150Dy confirmed their results [9].

Before this study the 146Gd chain consisted of the two unconnected fragments: (146Gd, 150Dy, 154Dy, 158Dy) and (166W, 170Os, 174Pt, 178Hg). The missing link is 162Hf. The measurement of its Q_α-value would result in five new mass values, completing the chain from 146Gd to 178Hg, 22 neutrons away from the line of stability. The search for the α-decay of 162Hf was therefore the goal of this study.

Although the use of on-line mass separation would have been desirable in order to demonstrate unambiguously the mass number, hafnium is a difficult element for any ion source, because of its low vapour pressure. We therefore used the He-jet technique to transport the activity to a well shielded counting location.

II. Experimental Method

The experiments were carried out at the upgraded MP tandem accelerator at the Chalk River Nuclear Laboratories. A He-jet system [10] was coupled to a fast tape-transport system similar to that described in ref. 11. Self supporting targets of 142Nd (enriched to 96.24%), Pr, and CsI, having thickness of 2.5 mg/cm2, were bombarded with 105 to 133 MeV 24Mg beams at a typical beam intensity of 10^4 n.A$^{-1}$. Recoiling atoms from the target were thermalized in helium gas (pressure: 80 kPa). The helium was saturated with NaCl aerosol generated by passing the gas through an oven containing NaCl crystals heated to about 620°C.

The gas was swept out from the target chamber through a 7 m long teflon capillary (inner diameter 0.7 mm) to the tape system, which was located in a low background area. Samples were collected on the tape and periodically moved to a counting position where α-particles were detected with a 300 mm^2 silicon surface barrier detector (thickness: 100 μm). For half-life determinations, each particle event was tagged by the time elapsed since the last tape movement. All α-particle energy were recorded event by event on tape. A mixed source of 239Pu, 241Am, and 244Cm served as a standard for α-energy calibration of the detector.

††Fellow of the Deutsches Forschungsgemeinschaft, on leave from II. Physikalisches Institut der Universität Göttingen, Göttingen, Germany

*Queen's University, Kingston and University of Toronto, Toronto, Ontario

††University of Toronto, Toronto, Ontario

- 178 -
The He-jet technique has a possible disadvantage for α-particle measurements caused by self absorption in the accumulated aerosol material at the collection spot. Thus an energy shift between off-line calibration and on-line measurement can result. Therefore the known α-emitters 151-153Ho, and 151,152Dy were produced in the 133Cs + 24Mg reaction, and α-peak position and line shape as well as He-jet transport efficiency were scanned for different oven temperatures. The adopted temperature setting provided sufficient transport efficiency while maintaining an acceptable line width (FWHM) of less than 30 keV. At this setting the mean energy loss in the salt deposit for α-rays between 4 and 5 MeV was determined to be (13 ± 2) keV.

Low energy γ-rays were detected concurrently by an intrinsic Ge-detector positioned behind the α-detector. The γ-events were stored in multispectrum mode either as 4 by 2048- or 8 by 1024-channel spectra.

Dead-time corrections for particle and γ-spectra were established by feeding pulser signals into both spectra. In a different set-up, coincidences between γ and X-rays were measured by moving the source into a counting position between two intrinsic Ge-detectors (crystal size: l) 200 mm² x 7 mm, 2) 1000 mm² x 15 mm). Energy signals were stored together with TAC signals on magnetic tape.

The energy and efficiency calibrations of the γ-detectors were obtained with standard sources of 152Eu and 133Ba.

III. Results

In the 142Nd + 24Mg reaction a new activity was observed emitting γ-rays with a half-life of T½ = (37.6 ± 0.8) s. Because the activity was not observed in the cross bombardment 141Pr + 24Mg, it was concluded that these γ-rays were emitted following the β-decay of Hf isotopes. The coincidence experiment provided confirmation since the strongest new γ-lines were observed in coincidence with Lu-X-rays as well as with 511 keV annihilation radiation.

Excitation functions were measured for both the 142Nd + 24Mg and 141Pr + 24Mg reactions, under the same experimental conditions (compare fig. 1). The two reactions are characterized by similar compound-nucleus Q-values and similar nucleon binding energies for the evaporation processes. Thus similar excitation functions can be expected.

The 141Pr + 24Mg reaction produced the isotopes 161,160Lu, first observed and identified with on-line mass separation. We used the reported γ-rays from these two isotopes to establish excitation functions for 160Lu and 161Lu. The excitation functions for the most intense γ-rays are presented in fig. 1.

Also given in fig. 1 is the excitation function for the strongest γ-line.

![Excitation functions measured for the bombardment of 142Nd and 141Pr targets with 24Mg beams.](image)

Eγ = 174 keV, of the new Hf activity produced from the 142Nd target. Because of its similarity to the 4n reaction curve from the 141Pr target, it was concluded that the new activity was also produced by a 4n reaction, and thus concluded it to be 162Hf.

During the bombardment of 142Nd two fairly strong α-lines appeared in the particle spectrum (fig. 2). The measured results for energy and half-life are listed in table 1 together with the average half-life of the γ-rays from 162Hf. Also given is the only previous result from 162Hf14).

We assign the new α-particle line at 4308 keV to 164Hf because a) the excitation function measured for this line parallels that for the production of γ-rays from β-decay of 162Hf (cf. fig. 1) b) the half-life measured from the decay of the α-line is in agreement with the half-life measured for the γ-rays from 162Hf (compare fig. 3). c) this α-line was not observed during a cross bombardment on 141Pr targets. This line represents the groundstate to groundstate transition between the even-even nuclei 162Hf and 158yb. Results from detailed γ- and γ-γ studies of the β-decay
Fig. 5: A section of the α-spectrum measured during a 3h bombardment of 142Nd (integrated beam intensity: 8×10^{14} particles). The weak line at 4070 keV stems probably from a slight Cs contamination of the target or the decay of the 180Yb, the daughter of 182Hf. The collection and the measurement time for each individual sample deposited by the He-jet was 60 s.

of 162Hf shall be presented in a later communication.

IV. Discussion and Conclusion

We have obtained new mass values for 162Hf, and implicitly for 166W, 170Os, 174Pt, and 178Hg, by combining the α-decay energy of 162Hf with previous reported mass values and α-decay energies. The mass excess data and corresponding Q_α-values are given in table 2. Comparison of the new data with theoretical mass values indicates a fair agreement with predictions based on the droplet model (Myers et al. [19]) and Groote et al. (see ref. 19) and also with the semi-empirical shell model (Liran and Zeldes, (see ref. 19)). A more detailed discussion will be presented in another contribution to the conference [18].

From the extended knowledge of atomic masses, information about one- and two-proton binding energies for some nuclei far from stability can be extracted. In fig. 4 we have plotted the 2p binding energies for a

Table 1

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>E_α [keV]</th>
<th>T_α (α) [s]</th>
<th>T_γ (γ)b [s]</th>
<th>Reaction Processc</th>
<th>E_α [keV]</th>
<th>T_α (α) [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>161Hf</td>
<td>4608(10)</td>
<td>19(2)</td>
<td>—</td>
<td>142Nd(24Mg,5n)</td>
<td>4600(10)</td>
<td>17(2)</td>
</tr>
<tr>
<td>162Hf</td>
<td>4308(10)</td>
<td>35.5(20)</td>
<td>37.6(8)</td>
<td>142Nd(24Mg,4n)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

a) Ref. 14.
b) Weighted mean of T_γ for the 174, 196 and 410 keV γ-lines of 162Hf.
c) Identified by excitation function.
Similarly, knowledge of mass values for the α-decay chain based on 147Tb would give one-proton binding energies for the members of this chain up to the lightest known gold isotope, 175Au. Although it is not proven that the ground state is fed for every α-decay of this odd-even chain, systematic considerations, similar to those used by Wapstra20, suggest that excited state feeding would be small. In any case, even if the measured α-energies for this chain are somewhat lower than the actual mass differences, the calculated $1p$ binding energies would be upper limits.

So far, the 147Tb α-decay is not linked to stable mass values, and one member, 163Ta, is missing. We have therefore started a search for the α-decay of 163Ta.

In the meantime, it is tempting to extrapolate the 147Tb mass value using the information now available for neighbouring masses7,18. This extrapolation and our preliminary result for 163Ta α-decay leads to the conjecture that 175Au and also 171Ir are probably proton unbound, having positive proton binding energies of $E_P = 800(200)$ keV and $E_P = 400(200)$ keV, respectively (compare fig. 4). A measurement of 147Tb mass would be desirable in order to confirm this expectation.

Acknowledgements

One of the authors (U.J.S) is indebted to the Deutsche Forschungsgemeinschaft for granting a fellowship and to Prof. Dr. W.-D. Schmidt-Ott for his interest in this study. Thanks is due also to AECL for kind hospitality and excellent working conditions.

Table 2

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>E_α (keV)</th>
<th>Ref</th>
<th>Q_α (keV)</th>
<th>Mass Excess (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>146Gd</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–76.09(2) a)</td>
</tr>
<tr>
<td>150Dy</td>
<td>4232(3)</td>
<td>[2]</td>
<td>4348(3)</td>
<td>–69.32(2)</td>
</tr>
<tr>
<td>154Er</td>
<td>4166(3)</td>
<td>[2]</td>
<td>4277(3)</td>
<td>–62.62(2)</td>
</tr>
<tr>
<td>158Yb</td>
<td>4069(10)</td>
<td>[15]</td>
<td>4175(10)</td>
<td>–56.02(2)</td>
</tr>
<tr>
<td>162Hf</td>
<td>4308(10)</td>
<td>Present Work</td>
<td>4417(10)</td>
<td>–49.18(3)</td>
</tr>
<tr>
<td>166W</td>
<td>4739(5)</td>
<td>[2]</td>
<td>4856(5)</td>
<td>–41.89(3)</td>
</tr>
<tr>
<td>170Os</td>
<td>5400(10)</td>
<td>[16]</td>
<td>5530(10)</td>
<td>–33.94(3)</td>
</tr>
<tr>
<td>174Pt</td>
<td>6035(10)</td>
<td>[17]</td>
<td>6177(10)</td>
<td>–25.34(3)</td>
</tr>
<tr>
<td>178Hg</td>
<td>6430(6)</td>
<td>[17]</td>
<td>6578(6)</td>
<td>–16.33(3)</td>
</tr>
</tbody>
</table>

a) Weighted mean of ref. 7,8,9
References

19) S. Maripuu, Atomic Data & Nucl. Data Tables 17, 5-6 (1976).

DISCUSSION

J. Jastrebocki: What was the Mg energy spread in the target? (The excitation curves look very broad.)

E. Hagberg: The energy spread of the Mg beam in the 142Nd target was typically 25 MeV at 130 MeV incident energy.

W.-D. Schmidt-Ott: The α-branching ratio of 162Hf must be extremely small. Do you have a number or an estimate on that?

E. Hagberg: We did, indeed, do an experiment where we annihilated positrons from the decay of 162Hf in a localized geometry. We have not analyzed that data yet but as a preliminary estimate I would say that the α-branching ratio is of the order of 10^{-5}.