The REX-ISOLDE Facility: Design and Commissioning Report

Editors: F. Ames
 J. Cederkall (Convenor)
 T. Sieber
 F. Wenander

Contents

1 Motivation and physics case 1
 1.1 Introduction to the physics case for accelerated radioactive beams 1
 1.1.1 Pure nuclear physics 1
 1.1.2 Nuclear astrophysics 4

2 The REX-ISOLDE beam preparation system 4
 2.1 The Penning trap (REXTRAP) 4
 2.1.1 Principle of operation 5
 2.1.2 Ion optical design 6
 2.1.3 REXTRAP set-up 6
 2.1.4 Buffer gas handling and vacuum system 8
 2.1.5 High-voltage platform and cage 8
 2.1.6 Operation 9
 2.1.7 Performance and measurement results 10
 2.2 The beam transport system between REXTRAP and EBIS 12
 2.2.1 Ion optics 13
 2.2.2 Set-up 13
 2.2.3 Vacuum 14
 2.2.4 REXTRAP beam diagnostics 14
 2.3 REXEBIS: The electron-beam ion source 15
 2.3.1 Principle of operation 15
 2.3.2 General magnet properties 16
 2.3.3 Solenoid construction and magnetic field 17
 2.3.4 Electron gun 18
 2.3.5 Inner structure 21
 2.3.6 Electron beam collector 23
 2.3.7 Beam optics 24
 2.3.7.1 Optical elements 24
 2.3.7.2 Acceptance and emittance 24
 2.3.8 Vacuum system 25
 2.3.9 Auxiliary systems 26
 2.3.10 Performance measurements 27
 2.3.10.1 Electron beam results 27
 2.3.10.2 Extracted ion beam results 28
 2.4 The REX-ISOLDE mass separator 31
 2.4.1 Beam line geometry 31
 2.4.2 Particle dynamics simulations 34
 2.4.3 Simulation of RFQ injection 35
3 The REX-ISOLDE linear accelerator

3.1 Introduction

3.2 The RFQ
 3.2.1 Mechanical properties
 3.2.2 RF properties
 3.2.3 Particle dynamics

3.3 The rebuncher section
 3.3.1 Particle dynamics

3.4 The REX IH DTL
 3.4.1 Mechanical properties
 3.4.2 RF properties
 3.4.3 Particle dynamics

3.5 The seven-gap resonators
 3.5.1 Mechanical properties
 3.5.2 RF properties
 3.5.3 Particle dynamics

3.6 REX-ISOLDE energy upgrade
 3.6.1 The IH nine-gap resonator
 3.6.2 Particle dynamics

3.7 The RF system
 3.7.1 Detector box
 3.7.2 RF delay unit
 3.7.3 Tuning control
 3.7.4 Fast amplitude and phase modulator
 3.7.5 Feedback control
 3.7.6 High-resolution phase shifter

3.8 Beam transport calculations
 3.8.1 Transport of the 0.3 MeV/u beam towards the MINIBALL target (A/q = 4)
 3.8.2 Injection into the IH structure (A/q = 4)
 3.8.3 Beam transport at 1.2 MeV/u to the MINIBALL target (A/q = 4)
 3.8.4 Beam line calculations for A/q = 4 ion beams with energies of 2.2 MeV/u to the MINIBALL target
 3.8.5 Beam line calculations for A/q = 4 ion beams from the third seven-gap resonator through the nine-gap resonator to the MINIBALL target with an energy of 3 MeV/u

3.9 Future developments and upgrades
 3.9.1 REX-ISOLDE linac energy upgrade above 4 MeV/u

4 The control system and associated equipment

4.1 Introduction

4.2 The NT/XP RPC server and client model
 4.2.1 The REXEBIS control system
 4.2.2 Beam optics control
 4.2.3 Beam observation equipment and control
4.3 The VME-OS/9 control system for REXTRAP
4.4 The OPC server approach to the RF and vacuum control systems
4.5 Operator access to the control system

References

Bibliography

Appendix A: REXTRAP devices
Appendix B: Beam transfer system devices
Appendix C: REXTRAP offline ion source devices
Appendix D: REXEBIS devices
Appendix E: Cooling circuit of the IH structure
Appendix F: Magnetic field–current dependence of the REX magnets
Appendix G: Mass separator beams
Appendix H: Control system devices