A COHERENT TIMING SOLUTION FOR THE NEARBY ISOLATED NEUTRON STAR RX J1308.6+2127/RBS 1223

D. L. KAPLAN* AND M. H. VAN KERKWIJK

ABSTRACT

We present a phase-connected timing solution for the nearby isolated neutron star RX J1308.6+2127 (RBS 1223). From dedicated Chandra observations as well as archival Chandra and XMM-Newton data spanning a period of five years, we demonstrate that the 10.31-ssec pulsations are slowing down steadily at a rate of \(\dot{P} = 1.120(3) \times 10^{-13} \) s s\(^{-1}\). Under the assumption that this is due to magnetic dipole torques, we infer a characteristic age of 1.5 Myr and a magnetic field strength of \(3.4 \times 10^{13} \) G. As with RX J0720.4−3125, the only other radio-quiet thermally emitting isolated neutron star for which a timing solution has been derived, the field strength is roughly consistent with what was inferred earlier from the presence of a strong absorption feature in its X-ray spectrum. Furthermore, for both sources the characteristic age is in excess of the cooling age inferred from standard cooling models. The sources differ, however, in their timing noise: while RX J0720.4−3125 showed considerable timing noise, RX J1308.6+2127 appears relatively stable.

Subject headings: pulsars: individual (RX J1308.6+2127) — stars: neutron — X-rays: stars

1. INTRODUCTION

The sample of nearby, radio-quiet, isolated neutron stars discovered by ROSAT (for a review, e.g., [Haberl 2004]) is of particular interest because of the unambiguous presence of strong, broad absorption features in the X-ray spectra of most sources. Since the spectra appear thermal, these features almost certainly arise in the neutron-star atmospheres. The features have usually been interpreted under the assumption of a pure hydrogen composition (not unlikely, given the short settling times for neutron stars) and a strong magnetic field (as suggested by the long, 3–10 s spin periods; [Heyl & Hernquist 1998], with the absorption reflecting either the proton cyclotron line or transitions between bound states of neutral hydrogen (e.g., [Haberl et al. 2003; van Kerkwijk et al. 2004]).

In order to help determine the nature of the absorption features, as well as to elucidate what sets the isolated neutron stars apart from young rotation-powered pulsars, we have started a program to obtain phase-connected timing solutions, and use these to estimate ages and magnetic field strengths. Earlier, we presented our first results, for RX J0720.4−3125 [Kaplan & van Kerkwijk 2003]; here, we consider a second source, RX J1308.6+2127.

RX J1308.6+2127 (also known as RBS 1223 and 1RXS J130848.6+212708) was identified as a possible nearby isolated neutron star by [Schwope et al. 1999]. The identification was confirmed with the detection of a 5.16-s X-ray periodicity [Hambaryan et al. 2002] and a very faint \(V \approx 28 \) mag probable optical counterpart with no radio emission [Kaplan, Kulkarni, & van Kerkwijk 2002a]. By comparing the periods measured from Chandra and archival ROSAT data, [Hambaryan et al. 2002] inferred a spin-down rate of \(\dot{P} = (0.7 - 2.0) \times 10^{-11} \) s s\(^{-1}\), implying a very strong magnetic field of \(\gtrsim 10^{14} \) G. [Haberl 2004], however, showed that the 5.16-s periodicity was in fact the first harmonic, implying a true period of 10.31 s (see also [Haberl et al. 2003], and that the spin-down rate inferred earlier was likely erroneous. This was confirmed by [Schwope et al. 2003], who attempted to determine a phase-connected timing solution, but failed due to cycle-count ambiguities.

Here, we show that with additional Chandra observations specifically obtained for timing purposes, we can obtain an unambiguous timing solution. We describe our analysis of the Chandra data, as well as of archival ROSAT, Chandra, and XMM-Newton data, in § 2 and use these to obtain a timing solution in § 3. Since our analysis closely follows the one used for RX J0720.4−3125 [Kaplan & van Kerkwijk 2003], we focus primarily on those aspects of the analysis that differ. We discuss the implications of our result in § 4.

2. OBSERVATIONS

Our primary data are eight observations taken with the Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 2003) aboard the Chandra X-ray Observatory (CXO). These were designed for timing accuracy, consisting of two sets of four exposures in the Continuous-Clocking (CC) mode geometrically spaced over a period of about two weeks and separated by about half a year. We combined these with data from other Chandra observations, as well as from observations with XMM-Newton and ROSAT. A log of all observations\(^3\) is given in Table 1.

For the Chandra data, we processed the level-1...

\(^{3}\) We do not use data from ROSAT observation 703848, since we, like [Hambaryan et al. 2002] and [Schwope et al. 2003], found there were insufficient counts to extract a period or an arrival time...
which combines power from the 10.31-s fundamental with ROSAT the solar-system barycenter. And finally, for the 1.2 keV, and used within 37 reprocess the observations. Next, we extracted events emchain within 37 and is given with 1-

TOAs, we need to measure TOAs, a phase-coherent timing solution in which each cycle of the source is accounted for. To measure TOAs, we need an initial reference period. We determined this from the ACIS CC data-sets using a Z2 test [Buccheri et al. 1983], which combines power from the 10.31-s fundamental with that from the 5.16-s harmonic (we could not detect significant power in any higher harmonics). We calculated Z2 both for the individual sets of four observations (observations 5522–5525 and 5526–5529) as well as for the eight observations combined. The overall Z2 spectrum has a single, well-defined peak, and all possible aliases are at considerably lower significances. The measured period is $P = 10.31252293(9)$ s (here and below, numbers in parentheses indicate the formal 1-σ uncertainties in the last digit unless otherwise indicated).

Using the period derived above, we constructed binned light curves (16 phase bins) for all of the observations. Unlike RX J0720.4–3125, RX J1308.6+2127 has non-sinusoidal pulsations and hence determining TOAs by fitting a single sinusoid would be inappropriate. Instead we fit for both the first harmonic and fundamental, with a possible phase shift between them:

$$N_i = A \sin(2\pi f_0 t_i + \phi_0) + r_2 \sin(4\pi f_0 t_i + \phi_0 + \Delta\phi_2)$$

where N_i is the number of counts in bin i, $f_0 = 0.069699481$ Hz is the frequency of the fundamental from above, t_i the time of bin i on the interval $[0, P)$, and the parameters are amplitude A, phase ϕ_0, amplitude ratio r_2, phase offset $\Delta\phi_2$, and constant offset C. As can be seen in Figure 1, this model provides a good fit to even the highest-quality lightcurves, which are those derived from the long EPIC-PN observations. The inferred phase offset and relative amplitude are similar for both observations, with $\Delta\phi_2 \approx 0.03$ and $r_2 \approx 2.8$.

Assuming that the pulse profile is not varying, we measured arrival times for all of the data using the above model, but with $\Delta\phi_2$ and r_2 fixed at 0.03 and 2.8, respectively, which generally provides a good fit to the light curves (see Fig. 1 for the EPIC-PN data). Our

Table 1

<table>
<thead>
<tr>
<th>Instrument</th>
<th>ID</th>
<th>Date</th>
<th>Exp. (ks)</th>
<th>Counts</th>
<th>TOA* (MJD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRI</td>
<td>704082</td>
<td>1998 Oct 01</td>
<td>4.8</td>
<td>498</td>
<td>50824.2143496(30)</td>
</tr>
<tr>
<td>ACIS 1/8</td>
<td>731</td>
<td>2000 Jun 24</td>
<td>9.5</td>
<td>7905</td>
<td>51179.5182790(5)</td>
</tr>
<tr>
<td>PN/ff</td>
<td>377-U2</td>
<td>2001 Dec 31</td>
<td>18.0</td>
<td>10633</td>
<td>52274.2594296(10)</td>
</tr>
<tr>
<td>PN/S5</td>
<td>501-S5</td>
<td>2003 Jan 01</td>
<td>27.0</td>
<td>66219</td>
<td>52640.4325929(5)</td>
</tr>
<tr>
<td>MOS1</td>
<td>501-S3</td>
<td>2003 Jan 01</td>
<td>29.0</td>
<td>14469</td>
<td>52640.4265055(9)</td>
</tr>
<tr>
<td>MOS2</td>
<td>501-S4</td>
<td>2003 Jan 01</td>
<td>29.0</td>
<td>14925</td>
<td>52640.4265042(7)</td>
</tr>
<tr>
<td>PN/ff</td>
<td>743-S3</td>
<td>2003 Dec 30</td>
<td>30.0</td>
<td>74587</td>
<td>53003.46906264(6)</td>
</tr>
<tr>
<td>MOS1</td>
<td>743-S1</td>
<td>2003 Dec 30</td>
<td>32.0</td>
<td>16086</td>
<td>53003.469067372(7)</td>
</tr>
<tr>
<td>MOS2</td>
<td>743-S2</td>
<td>2003 Dec 30</td>
<td>32.0</td>
<td>16523</td>
<td>53003.46907388(9)</td>
</tr>
<tr>
<td>HRC</td>
<td>4595</td>
<td>2004 Mar 30</td>
<td>90.1</td>
<td>33823</td>
<td>53095.3847872(16)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5522</td>
<td>2005 Feb 14</td>
<td>16.0</td>
<td>8953</td>
<td>53415.6875355(10)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5523</td>
<td>2005 Feb 15</td>
<td>5.7</td>
<td>3254</td>
<td>53416.5968822(17)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5524</td>
<td>2005 Feb 19</td>
<td>5.2</td>
<td>2922</td>
<td>53420.171683(14)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5525</td>
<td>2005 Mar 10</td>
<td>5.6</td>
<td>2923</td>
<td>53439.0475044(11)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5526</td>
<td>2005 Jul 09</td>
<td>15.1</td>
<td>7684</td>
<td>53560.2591584(8)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5527</td>
<td>2005 Jul 10</td>
<td>5.1</td>
<td>2876</td>
<td>53561.2545949(17)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5528</td>
<td>2005 Jul 14</td>
<td>5.2</td>
<td>2937</td>
<td>53565.7097939(18)</td>
</tr>
<tr>
<td>ACIS CC</td>
<td>5529</td>
<td>2005 Jul 29</td>
<td>5.2</td>
<td>3048</td>
<td>53590.789447(14)</td>
</tr>
</tbody>
</table>

resulting arrival times are listed in Table 1. Here, we assigned these times to the time of the maximum of the model lightcurve that follows the lowest minimum and is nearest to the middle of the observation (see Fig. 1; this is the spectrally harder maximum from Schwinge et al. 2005). For completeness, we note that the TOAs derived using the above model are consistent with those one would find using a simpler model consisting of only the first harmonic (i.e., a sinusoid at $P = 5.16 s$): the mean absolute difference is 0.2σ.

We determined a timing solution from the TOAs using an iterative procedure, as in Kaplan & van Kerkwijk (2005). We started with the Chandra ACIS CC TOAs and found that we were able to fit these without the need for a frequency derivative and with no cycle ambiguity, consistent with the power spectrum analysis. However, between the first ACIS CC TOA and the preceding TOA (Chandra HRC) there is a gap of 320 days and we found that a constant-frequency model led to a poor fit ($\chi^2 = 202.7$ for 7 degrees of freedom). Including a frequency derivative $\dot{\nu}$, the cycle count over the gap became ambiguous by ±1 cycle. The three possibilities—2683550, 2683551, and 2683552 cycles—lead to three possible solutions for $\dot{\nu}$: $2.1 \times 10^{-15} \text{Hz s}^{-1}$, $1.0 \times 10^{-15} \text{Hz s}^{-1}$, and $-1.1 \times 10^{-15} \text{Hz s}^{-1}$. Fortunately, the addition of the remaining data eliminates the first two of those solutions: with the XMM-Newton TOAs (and the remaining ACIS point), they have $\chi^2 = 439.1$ and 1107.6 with TOA rms of 0.041 s and 0.099 s, respectively, while the third has $\chi^2 = 18.7$ with a TOA rms of 0.010 s (all for 14 degrees of freedom).

The timing solution derived from the Chandra and XMM-Newton TOAs is presented in Table 2. As indicated by the value of χ^2, the data are well reproduced by simple spin-down: the addition of a cubic ($\ddot{\nu}$) term leads to only an insignificant reduction in χ^2, from 18.7 to 18.6, and the inferred value of $\ddot{\nu} = -7(15) \times 10^{-26} \text{Hz s}^{-2}$ is consistent with zero.

Unlike the Chandra and XMM-Newton data, however, the ROSAT HRI point is slightly discrepant from the fit in Table 2 exceeding it by 0.15(3) cycles. If we include it in the fit, the overall solution does not change drastically ($\dot{\nu}$ becomes $-1.050(2) \times 10^{-15} \text{Hz s}^{-1}$) and the deviation does decrease to 0.11(3) cycles, but the overall χ^2 increases to 43.5 for 15 degrees of freedom (with a TOA rms of 0.0271 s). The deviation could be intrinsic (a glitch, timing noise, precession, changes in pulse profile), but might also be instrumental, perhaps related to differences in energy responses between the different instruments. Unfortunately, the sampling is too sparse to determine a unique solution. As an example, we show in Figure 2 a cubic fit that matches the HRI point reasonably well, with $\chi^2 = 22.5$ for 14 degrees of freedom, TOA rms of 0.011 s, and $\dot{\nu} = -2.5(5) \times 10^{-25} \text{Hz s}^{-2}$. We stress, however, that, in essence, this solution approximates the Chandra and XMM-Newton data with a $\dot{\nu} = 0$ model and then adjusts $\dot{\nu}$ to pass through the HRI point. Hence, it does not gives much additional insight.

4. DISCUSSION & CONCLUSIONS

The spin period and spin-down rate we derive for RX J1308.6+2127 are quite similar to those of RX J0720.4−3125, the only other isolated neutron star with a timing solution (Kaplan & van Kerkwijk 2005), placing both of them above the pulsar “death-line” in a P−\dot{P} diagram despite their lack of radio emission (Kaplan et al. 2002a, 2003). Hence, assuming both spin down by magnetic dipole radiation, RX J1308.6+2127 and RX J0720.4−3125 have similar inferred magnetic field strengths ($B_{\text{dip}} = 3.4$ and $2.4 \times 10^{13} \text{G}$, respectively), characteristic ages ($t_{\text{char}} = 1.5$ and 1.9 Myr), and spin-down luminosities ($\dot{E} = 4.0$ and $4.7 \times 10^{30} \text{ergs s}^{-1}$). Both sources also have thermal X-ray spectra with temperatures of $\sim 1 \times 10^6 \text{K}$, but superposed on these are rather different absorption features: in RX J1308.6+2127, the absorption feature is centered near or below 300 eV and is very wide and strong, with an equivalent width of $> 150 \text{eV}$ (Haberl et al. 2003); in RX J0720.4−3125, on the other hand, no absorption was apparent until 2004, when an absorption feature with only a slightly higher energy but much smaller equivalent width ($\sim 40 \text{eV}$) appeared (Haberl et al. 2004; de Vries et al. 2004). If the magnetic fields, line energies,
and blackbody temperatures are all similar, what would account for the significant difference in line strength? The interpretation of the absorption lines is still a matter of debate. For RX J1308.6+2127, Haberl et al. (2003) suggested proton cyclotron absorption in a field of \((2-6) \times 10^{13} \) G, which could match both the energy and strength of the observed feature (for a gravitational redshift of \(z = 0.3 \), the observed line energy would be at 100–300 eV). As the feature in RX J0720.4−3125 was so much weaker but at a similar energy, van Kerkwijk et al. (2003) argued that for that source the proton cyclotron line was below the observed band and that the absorption was due to the \(0 \rightarrow 2 \) transition between tightly-bound states of neutral hydrogen in a \(\sim 2 \times 10^{13} \) G field.

Qualitatively, the field strengths inferred from our timing measurements agree with the above expectations: the field of RX J1308.6+2127 is stronger than that of RX J0720.4−3125, while a weaker field would be expected if the absorption in both sources were due to the same mechanism. Quantitatively, a larger difference between the two sources was expected. However, this discrepancy may simply reflect orientation and/or substructure in the magnetic field—higher-order multipoles near the surface would affect the emission properties but not the spin-down rate. Such effects may also be responsible for the difference in pulse profile: double-peaked for RX J1308.6+2127, and sinusoidal for RX J0720.4−3125. Phase-resolved X-ray spectroscopy coupled with observations of more sources are probably the best ways to disentangle these effects, and efforts are underway (e.g., Haberl et al. 2004; Schwope et al. 2005).

Another open issue is that the characteristic ages of RX J0720.4−3125 and now RX J1308.6+2127 are three to four times larger than the values of \(\sim 0.5 \) Myr one would expect for simple cooling models (Hevl & Hernquist 1998; Kaplan et al. 2002; Zane et al. 2002) and, in the case of RX J0720.4−3125, tracing the object back along its trajectory to a likely birth location (Motch, Zavlin, & Haberl 2003; Kaplan 2004). Indeed, this age discrepancy may extend to the other isolated neutron stars discovered by ROSAT: all have similar temperatures and thus likely similar cooling ages, and most also have similar periods (3–10 s) and, based on the similar energies at which they show X-ray absorption features (0.3–0.7 keV), similar magnetic field strengths, implying similar characteristic ages.

We first consider whether the discrepancy could result from the characteristic age being an overestimate. In general, for a spin-down torque \(\propto \nu^3 \), the pulsar’s spin-down age is given by \(t_{sd} = \frac{P}{(n-1)\dot{P}} \left[1 - (P_0/P)^{n-1}\right] \), where \(P_0 \) is the initial spin period and \(n = \nu \dot{\nu}/\dot{\nu}^2 \) is the “braking index,” equal to 3 under the assumption of magnetic dipole radiation (e.g., Manchester & Taylor 1977, p. 111). For \(P_0 \ll P \) and \(n = 3 \), one recovers the characteristic age \(t_{char} \equiv P/2\dot{P} \), but if \(P_0 \) is not much smaller than the current period \(P \), the characteristic age is an overestimate. While we cannot exclude the required birth periods of 7–8 s, there is as yet no concrete indication that neutron stars are born with periods longer than 100 ms (e.g., Kaspi & Helfand 2002; Gotthelf et al. 2004).

For RX J0720.4−3125, this led us to discuss the possibility that the neutron star formed in a binary system and accreted matter before being ejected in a second supernova; at ejection, the neutron star would still be hot from the accretion, but spinning slowly (Kaplan & van Kerkwijk 2003). A variation on this model would involve accretion from a residual debris disk such as that recently discovered around the anomalous X-ray pulsar 4U 0142+61 (Wang, Chakrabarty, & Kaplan, 2005), but this assumes that the accretion disk persists for a sufficient time and can affect the spin-down of the neutron stars, both of which are far from clear. In either case, if accretion played a role, it might explain why the spectral properties of the isolated neutron stars are rather different from those of the radio pulsar population.

Unfortunately, the above solution for the age discrepancy is not unique. First, it is possible that the spin-down was not due to a constant dipole but that the magnetic field decayed (effectively, this implies \(n > 3 \)). Second, the cooling age could be incorrect due to non-standard cooling. For instance, the energy released by magnetic field decay might keep a neutron star hotter (Hevl & Kulkarni 1998; note, however, that these authors do not expect significant effects for the field strengths we infer) and longer cooling times are also expected for a light neutron star (Yakovlev et al. 2003). A prolonged cooling timescale seems somewhat unlikely in light of the kinematic age estimates, though it should be kept in mind that these may also not be unique: for RX J0720.4−3125, several different birth places are possible (Motch et al. 2003; Kaplan 2004).

Finally, when fitted with just a simple spin-down model, RX J0720.4−3125 showed significant timing residuals of 0.31 s (root-mean-square), much larger than the uncertainties on the TOAs. In contrast, for RX J1308.6+2127 the root-mean-square residuals are only 0.010 s (excluding the HRI point), consistent with measurement errors. Since the sources were observed with the same instruments, and have similar spectral shapes, the differences in timing behaviors are likely not instrumental. Instead, they may well reflect the fact that
both the spectrum and pulse profile of RX J0720.4−3125 are varying with time (de Vries et al. 2004; Vink et al. 2004), while RX J1308.6+2127 appears to be stable.

We acknowledge support through Chandra grant GO5-6050A.

REFERENCES

Manchester, R. N. & Taylor, J. H. 1977, Pulsars (San Francisco: W. H. Freeman, 1977.)