The SPL-Fréjus physics potential

Jean-Eric Campagnea

aLaboratoire de l’Accélérateur Linéaire - Univ. Paris-Sud - CNRS - BP 34 - 91898 Orsay Cedex, France

An optimization of the CERN-SPL beam line has been performed which leads to better sensitivities to the θ_{13} mixing angle and to the δ_{CP} violating phase than those advocated considering baseline scenario.

1. Introduction

An optimization of the energy as well as the secondary particle focusing and decay tunnel has been undertaken in the context of a Super Beam of 4 MW1 using the CERN-SPL2 and searching for $\nu_{\mu} \rightarrow \nu_e$ ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$) appearance channels in a 440 kT fiducial volume water Cerenkov detector located in an possible new underground laboratory at the Fréjus tunnel, 130 km from the CERN complex.

2. Fluxes

The secondary particles from the interaction of proton beam impinging a 30 cm long 1.5 cm diameter mercury target, have been obtained with the FLUKA generator. At kinetic energy of 3.5 (2.2) GeV, the number of p.o.t per year is 0.69 (1.10) 10^{23} while the numbers of $\pi^+/\pi^-/K^+/K^0$ per p.o.t are $0.41/0.37/3510^{-4}/3010^{-4}$ (0.24/0.18/710^{-4}/610^{-4}). At higher beam energy, the kaon rates grow rapidly compared to the pion rates, and needless to emphasize the need of an experimental confirmation34 of such numbers.

The focusing system optimized in the context of a Neutrino Factory35 has been redesigned considering the specific requirements of a Super Beam. The most important points are the phase spaces that are covered by the two types of horns are different, and that the pions to be focused should have an energy of the order of p_{μ} (MeV)/3 $\approx E_{\nu} \gtrsim 2L$ (km) to obtain a maximum oscillation probability. In practice, this means that one should collect 800 MeV/c pions. The resulting fluxes for the positive (ν_{μ} beam) and the negative focusing ($\bar{\nu}_{\mu}$ beam) are show on figure4 The total number of ν_{μ} ($\bar{\nu}_{\mu}$) in positive (negative) focusing is about $1.18(0.97)10^{12}$/m2/yr with an average energy of 300 MeV. The ν_e ($\bar{\nu}_e$) contamination in the ν_{μ} beam is around 0.7% (6.0%). Compared to the fluxes used in references78 the gain is at least a factor 2.5. Using neutrino cross-sections on water9, the number of expected ν_{μ} charged current is about 95 per kT yr.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{The ν_{μ} and the $\bar{\nu}_{\mu}$ fluxes obtained by optimizing the SPL for a Super Beam case ("SB Opt.") are compared to those obtained with a focusing system designed for a Neutrino Factory ("NF Opt.").}
\end{figure}
Figure 2. Comparison of the sensitivity contours with the new optimized setup and the original SPL design after 5 years of running with positive focusing.

3. Physics potential

The physics potential of the new optimized SPL may be determined using GLoBES software [10]. Both the appearance and the disappearance channels have been used, and also five bins of 200 MeV each have been introduced. The π⁰ background have been rejected using a tighter PID cut compared to standard SuperK analysis [7]. The Michel electron has been required for the μ identification. As ultimate goal suggested by [11] a 2% systematical error is used both for signal and background.

The 90% CL sensitivity contour in the \((\Delta m_{31}^2, \sin^2 2\theta_{13})\) plane after 5 years running with a positive focusing is shown on figure 2. With the new optimized setup, one expects to reach a limit on \(\theta_{13}\) of 0.7°. One may also appreciate on figure 3 the improvement on the combined sensitivity of \(\sin^2 2\theta_{13}\) and \(\delta_{CP}\) with the new optimization compared for instance to the T2K project [11].

So, the optimized SPL beam line operating a Super Beam towards a megaton scale detector at the Fréjus tunnel has a great potential contrary to the strong statement advocated at the last SPSC/PSC Villars meeting [12].

REFERENCES

2. SPL Conceptual Design, CERN 2000-012
3. C. Catanesi et al., CERN-SPSC 2002/019
6. A. Blondel et al., CERN-NUFACT-Note-78 (2001)

12. CERN SPSC and PS Committee, CERN-SPSC-2005-010, SPSC-M-730