Two-colorable graph states with maximal Schmidt measure

Simone Severini

1University of York, U.K.

The Schmidt measure was introduced by Eisert and Briegel for quantifying the degree of entanglement of multipartite quantum systems [Phys. Rev. A 64, 022306 (2001)]. Although generally intractable, it turns out that there is a bound on the Schmidt measure for two-colorable graph states [Phys. Rev. A 69, 062311 (2004)]. For these states, the Schmidt measure is in fact directly related to the number of nonzero eigenvalues of the adjacency matrix of the associated graph. We remark that almost all two-colorable graph states have maximal Schmidt measure and we construct specific examples. These involve perfect trees, line graphs of trees, cographs, graphs from anti-Hadamard matrices, and unicyclic graphs. We consider some graph transformations, with the idea of transforming a two-colorable graph state with maximal Schmidt measure into another one with the same property. In particular, we consider a transformation introduced by François Jaeger, line graphs, and switching. By making appeal to a result of Ehrenfeucht et al. [Discrete Math. 278 (2004)], we point out that local complementation and switching form a transitive group acting on the set of all graph states of a given dimension.

Keywords: graph states, Schmidt measure, local complementation, switching, nonsingular graphs, trees, line graphs, cographs, unicyclic graphs.

PACS numbers: 03.67.-a, 03.67.Mn

I. INTRODUCTION

Graph states are certain pure multi-party quantum states associated to graphs (see, e.g., 32, 35, 36). Graph states have important applications in quantum error correction and in the one-way quantum computer (see 24 and 4, respectively). The graph states associated to bipartite graphs, also called two-colorable graph states 2, have useful properties. For example, Greenberger-Horne-Zeilinger states and cluster states are two-colorable graph states 27. In addition, two-colorable graph states are equivalent (up to local unitary transformations) to Calderbank-Shor-Steane states 16.

The Schmidt measure, based on a generalization of the Schmidt rank of pure states, was introduced by Eisert and Briegel 14 for quantifying the degree of entanglement of multipartite quantum systems. Although generally intractable, it turns out that it is easy to bound the Schmidt measure for two-colorable graph states. The Schmidt measure is in fact directly related to the rank of the graph associated to the state. (It has to be remarked that an entanglement measure for graph states, which can be computed efficiently from a set of generators of the stabilizer group, was introduced in 18.) The rank of a graph is the number of nonzero eigenvalues of the adjacency matrix; its study has a number of applications 10. For example, in chemistry, the graph representing the carbon-atom skeleton of a molecule has full rank (that is, equal to the number of vertices) if the so-called conjugated molecule is chemically stable.

This paper presents a portfolio of two-colorable graph states with maximal Schmidt measure. Practically, this paper mainly surveys results on (0,1) invertible matrices and merely translates these into the context of graph states. The paper is organized as follows. In Section 2, we recall the notion of graph state and Schmidt measure. In Section 3, we describe some classes of graphs with full rank. These concern perfect trees, certain bipartite graphs obtained from a class of cographs (called here Bıyıkoğlu cographs), certain graphs obtained from anti-Hadamard matrices, and unicyclic graphs. In Section 4, we consider some graph transformations, with the idea of transforming a two-colorable graph state with maximal Schmidt measure into another one with the same property. In particular, we consider an operation introduced by François Jaeger, line graphs, and switching. Even if it does not seem easy to establish some general relation between switching and the rank of the adjacency matrix, we claim that switching is worth further study. In fact, together with local complementation (a graph operation which is central in the context of graph states), it generates a transitive group acting on the set of graph states of a given dimension.

II. GRAPH STATES

Firstly, let us recall the definition of a graph state 30. A graph $G = (V(G), E(G))$ is a pair whose elements are two set, $V(G) = \{1, 2, ..., n \}$ and $E(G) \subset V(G) \times V(G)$. The elements of $V(G)$ and $E(G)$ are called vertices and edges, respectively. We assume that $\{i, i\} \notin E(G)$ for all $i \in V(G)$. The adjacency matrix of G is the matrix $A(G)$ such that $A(G)_{i,j} = 1$ if $\{i, j\} \in E(G)$ and $A(G)_{i,j} = 0$ if $\{i, j\} \notin E(G)$. The matrices

$$
\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad \text{and} \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

*Electronic address: ss54@york.ac.uk
are called Pauli matrices. Let I be the identity matrix. Given a graph G, we define a block-matrix $S(G)$ with i,j-th block defined as follows:

$$
S(G)_{i,j} = \begin{cases}
\sigma_x, & \text{if } i = j; \\
\sigma_z, & \text{if } \{i,j\} \in E(G); \\
I, & \text{if } \{i,j\} \notin E(G).
\end{cases}
$$

From the block-rows of $S(G)$ we construct the following matrices:

$$
S(G)_1 = S(G)_{1,1} \otimes S(G)_{1,2} \otimes \cdots \otimes S_{1,n}, \\
S(G)_2 = S(G)_{2,1} \otimes S(G)_{2,2} \otimes \cdots \otimes S_{2,n}, \\
\vdots \\
S(G)_n = S(G)_{n,1} \otimes S(G)_{n,2} \otimes \cdots \otimes S_{n,n}.
$$

It can be shown that these matrices all commute. The graph state associated to the graph G is defined to be the common eigenvector of the matrices $S(G)_1, S(G)_2, ..., S(G)_n$ with eigenvalue 1. We denote by $|G\rangle$ the graph state corresponding to the graph G.

Let $\mathcal{H} \equiv \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$ be an Hilbert space assigned to a quantum system with n subsystems. The pure state $|\psi\rangle$ of the system can be written as

$$
|\psi\rangle = \sum_{i=1}^{R} \alpha_i |\psi_i\rangle_1 \otimes |\psi_i\rangle_2 \otimes \cdots \otimes |\psi_i\rangle_n,
$$

where $\alpha_i \in \mathbb{C}$ for $i = 1, 2, ..., R$, and $|\psi_i\rangle_j \in \mathcal{H}_j$ for $j = 1, 2, ..., n$. The Schmidt measure of $|\psi\rangle$ is defined by $E_S(|\psi\rangle) = \log_2(r)$, where r is the minimal number R of terms in the summation of Eq. (1) over all linear decompositions into product states.

Two vertices i, j of a graph are said to be adjacent if $\{i, j\}$ is an edge (and the edge is then incident with the vertices). A graph is bipartite if it has a bipartition of the set of vertices into two disjoint sets where vertices in one set are adjacent only to vertices in the other set. The spectrum of a graph G is the collection of eigenvalues of $M(G)$, or equivalently, the collection of zeros of the characteristic polynomial of $M(G)$ (see, e.g., [14]). The rank of G, denoted by $r(G)$, is the number of non-zero eigenvalues in the spectrum of $M(G)$. The nullity of G is the number of eigenvalues of $M(G)$ which are equal to zero. A number of important parameters of a graph G is bounded by a function of $r(G)$, for example, clique number, chromatic number, etc. The rank of G is bounded above by the number of distinct nonzero rows of $M(G)$. A graph is nonsingular if $r(G) = [V(G)]$. The following proposition gives bounds on the Schmidt measure of graph states associated to bipartite graphs:

Proposition 1 ([14]) Let G be a bipartite graph. Then

$$
\frac{1}{2} r(M(G)) \leq E_S(|G\rangle) \leq \left\lfloor \frac{|V|}{2} \right\rfloor.
$$

Moreover, if $r(G) = n$ then $E_S(|G\rangle) = \left\lfloor \frac{|V|}{2} \right\rfloor$.

Before to move on to the next sections, it is useful to describe a way to construct a bipartite graph on $2n$ vertices from an $n \times n$ $(0,1)$-matrix (recall that a $(0,1)$-matrix is a matrix whose entries are in the set $\{0,1\}$). Let G be a graph with adjacency matrix

$$
M(G) = P \begin{pmatrix} 0 & M \\ M^T & 0 \end{pmatrix} P^T,
$$

where P is some permutation matrix and M is a $(0,1)$-matrix. It is clear that G is bipartite and that the rank of G is twice the rank of M. We say that G is the bipartite double of the (possibly directed) graph with adjacency matrix M.

III. BIPARTITE GRAPHS WITH MAXIMAL RANK

By Proposition 1, a graph state $|G\rangle$ has maximal Schmidt measure if the bipartite graph G is nonsingular. In the next subsections we present (in this order) the following bipartite nonsingular graphs:

- perfect trees;
- Bıyıkoğlu cographs;
- graphs from anti-Hadamard matrices;
- certain unicyclic graphs.

A. General remarks

Minimum number of edges. A path in a graph is a finite sequence of alternating vertices and edges, starting and ending with a vertex, $v_1 v_2 v_3 \ldots v_n$, such that every consecutive pair of vertices v_x and v_{x+1} are adjacent and v_x is incident with v_{x+1}. The length of a path is the number of its vertices. A path of length n is denoted by P_n. A cycle of length $n-1$, that is a path in which $v_1 = v_n$, is denoted by C_n. A connected graph is a graph such that there is a path between all pairs of vertices. A connected component is a maximal subset of vertices and edges between them that forms a connected graph. On the base of Proposition 18, we can write:

Proposition 2 The smallest number of edges of a graph on n vertices associated to a two-colorable graph state with maximal Schmidt measure is $n/2$ if n is even and $(n + 3)/2$ if n is odd; if the graph is connected then the numbers are $n - 1$ if n is even and n if n is odd. (The graphs in question are obvious.)

Random states. Numerical evidence gives strong support to the conjecture that the probability that an $n \times n$ $(0,1)$-matrix is singular is exactly $n^2 2^{-n}$ (see, e.g., [29, 11]). Clearly, $\lim_{n \to \infty} n^2 2^{-n} = 0$. Based on this conjecture, it is relatively safe to believe that almost all
Nullity preserving operations. When a vertex and its incident edges are deleted from a graph G, the rank of the resultant graph cannot exceed $r(G)$ and can decrease by at most 2. When edges are added to a graph, the rank of the resultant graph cannot decrease and can increase by at most 2. The following two operations preserve the nullity of a graph: (i) A path of length 6 is replaced by an edge. (ii) A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ and every arc in $E(H)$ has both its end-vertices in $V(G)$. A subgraph H of G is an induced subgraph if every edge in $E(G)$, having both vertices in $V(H)$, is also in $A(H)$. For a graph G having vertex incident with one edge only, the induced subgraph H, obtained by deleting this vertex together with the vertex adjacent to it, has the same nullity of G.

B. Perfect trees

A tree is a graph with no path that starts and ends at the same vertex. A matching is a graph G is a set $S \subseteq E(G)$ no two edges are incident with a common vertex. A matching S is perfect if $|V| = 2|S|$. The matching number, denoted by $\beta(G)$, is the largest cardinality of a matching in G. For some classes of graphs (for example, trees) $r(G)$ and $\beta(G)$ are related. A complete graph on n vertices, denoted by K_n, is a graph such that $E(K_n) = V(K_n) \times V(K_n)$. A perfect tree is defined as follows: the tree K_2 is perfect; if T_1 and T_2 are perfect trees then the tree obtained by adding an edge between any vertex of T_1 and any vertex of T_2 is also perfect.

The authors of [27] observed that the Schmidt measure of a tree can be obtained from the size of its smallest vertex cover (that is, the minimum number of vertices required to cover all edges). Let T be a tree on n vertices. It is well-known that (see, e.g., [3] or [8], Theorem 8.1) $r(T) = 2 \cdot \beta(T)$. Then $r(T) = n$ if and only if T has a perfect matching. One can show that a graph has a perfect matching if and only if it is perfect (a proof of this result is Lemma 3.2 in [20]). Given that a graph is bipartite if and only if it has no cycles of odd length, a tree is bipartite since it is no cycles by definition. The following is a direct consequence of this reasoning:

Proposition 3 Let T be a perfect tree on n vertices. Then $E_S([T])$ is maximal.

C. Cographs

A graph G is said to be H-free if H is not an induced subgraph of G. A cograph is a P_2-free graph. An important subclass of cographs consists of threshold graphs. These are applied to integer programming, synchronization of parallel processes, etc. (see, e.g., [21]). A connected cograph is bipartite if and only if it is a complete bipartite graph, and cographs on n vertices and m edges are recognized in time $O(n + m)$. A simple construction of cographs is given by Lovasz [30]. For a cograph G on n vertices, Royle [34] and Bıyıkoğlu [1] settled in the affirmative a conjecture of Silke [33], by proving that if the rows of $M(G)$ are distinct and nonzero then $r(G) = n$.

The cographs with invertible adjacency matrix have been characterized by Bıyıkoğlu (see [6], Lemma 4). For this reason, we refer to these graphs as Bıyıkoğlu cographs. Defining Bıyıkoğlu cographs is lengthy and it requires a number of notions. The interested reader is addressed to [6].

Proposition 4 Let G be the bipartite double of a Bıyıkoğlu cograph. Then $E_S([G])$ is maximal.

D. Graphs from anti-Hadamard matrices

An anti-Hadamard matrix M is an $n \times n$ $(0,1)$-matrix for which $\mu(M) = \mu(n)$, where $\mu(M) = \sum_{i,j=1}^{n} (M_{i,j}^{-1})^2$ (the square of the Euclidean norm of M^{-1}) and $\mu(n) = \max M \mu(M)$, with the maximum taken over all invertible $(0,1)$-matrices. Anti-Hadamard matrices where introduced by Graham and Sloane as $(0,1)$-matrices which are “only just nonsingular” [22]. Next is an anti-Hadamard matrix:

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Proposition 5 Let G be the bipartite double of a digraph whose adjacency matrix is an anti-Hadamard matrix. Then $E_S([G])$ is maximal.

E. Unicyclic graphs

A graph is unicyclic if it has the same number of vertices and edges. A unicyclic graph G satisfying one of the following two properties is said to be elementary: (i) The graph G is the cycle C_n where $n \neq 0 \pmod{4}$ (ii) The graph G is constructed as follows: select t vertices from C_4 such that between two selected vertices there is an even (possibly 0) number of vertices, and t is an integer such that $0 < t \leq l$ with $l = t \pmod{2}$; each one of these selected t vertices is then joined to one of t extra vertices. By a result of [42], we have the next fact:

Proposition 6 If G is an elementary unicyclic graph, or a graph obtained by joining a vertex of a perfect tree with an arbitrary vertex of an elementary unicyclic graph, then $E_S([G])$ is maximal.
IV. GRAPH TRANSFORMATIONS

A. Inverse of the adjacency matrix

Local complementation is a graph transformation whose study was principally carried on by Bouchet and Fon-der-Flaas. Local complementation is important in the context of graph states. Given a graph G, the neighborhood of $i \in V(G)$ is $N(i) = \{j : \{i, j\} \in E(G)\}$. The graph G_i is the local complement of G at i if $V(G_i) = V(G)$ and $\{k, l\} \in E(G_i)$ if and only if one of the following two conditions is satisfied: (i) $\{k, l\} \in E(G)$ and $k \notin N(i)$ or $l \notin N(i)$; (ii) $\{k, l\} \notin E(G)$ and $k, l \in N(i)$. The mapping $\gamma_i(G) = G_i$ is called local complementation at i. Note that $\gamma_i(\gamma_j(G)) = \gamma_i(G_j) = G$. The Clifford group \mathcal{C}_1 on one qubit is the group of all 2×2 unitary matrices C, for which $C\sigma_x C^\dagger = \pm \sigma_x$ and $C\sigma_z C^\dagger = \pm \sigma_z$. The Clifford group \mathcal{C}_n on n-qubits is the n-fold tensor product of elements of \mathcal{C}_1. Two graph states G and H of dimension 2^n are said to be \mathcal{L}C-equivalent if there is $U \in \mathcal{C}_n$ such that $U(G)^{T} = H$. It may be interesting to mention that the interlace polynomial is an invariant under local complementation. Hein et al. and Van den Nest et al. proved the following link between local complementation and \mathcal{L}C-equivalence: two graph states G and H are \mathcal{L}C-equivalent if and only if $\gamma_k(\gamma_j(\gamma_i(G))) = H$, where $\gamma_k, \gamma_j, \gamma_i$ is a sequence of local complementations at vertices $k, j, i \in V(G)$. Let G' be the graph on n vertices whose adjacency matrix is obtained from $M(G)^{-1}$ by changing the sign of the negative entries. Jaeger proved that if $r(G) = n$ then $r(G') = n$ and G' can be obtained from G by a sequence of local complementations (see also [8]). This implies the following:

Proposition 7 Let $|G\rangle$ be a two-colorable graph state with maximal Schmidt measure. Then $|G'\rangle$ has maximal Schmidt measure. Moreover, $|G\rangle$ and $|G'\rangle$ are \mathcal{L}C-equivalent.

B. Line graph

The line graph of a graph G, denoted by $L(G)$, is the graph whose set of vertices is $E(G)$ and $\{\{i, j\}, \{k, l\}\} \in E(L(G))$ if and only if one of the following conditions is satisfied: $j = k$, $j = l$, $i = k$ or $i = l$. The rank of the line graph of a graph on n vertices is at least $n - 2$ (14, Proposition 14). A clique is an induced complete subgraph. In a graph G, a vertex i is a cutpoint if the graph $G\setminus i$, obtained by deleting i and all edges incident with i, has more connected components than G. Given a graph G, we have $G = L(T)$ for some tree T if and only if $E(G)$ can be partitioned into a set of cliques with the property that any vertex is in either one or two cliques; if a vertex is in two cliques then it is a cutpoint. Gutman and Sciriha proved that if T is a tree then $L(T)$ is either nonsingular or it has nullity 1 ([23], Theorem 2.1). However, the line graph transformation applied to trees it is not directly relevant to our context, since we need $L(T)$ to be bipartite. In fact, it is clear that $L(T)$ is bipartite (and a path) if and only if T itself is a path.

C. Switching

Proposition 8 gives a method to obtain a graph state (not necessarily two-colorable) with maximal Schmidt measure from a two-colorable graph state with the same entanglement. The graph operation considered in Proposition 8 is then guaranteed to preserve the amount of entanglement (which is that case is maximal). Is there a simple operation that is guaranteed to change the amount of entanglement? Switching is a graph operation introduced by Van Lint and Seidel (see [24] for a survey). The graph G^n_k is the switching of G at i if $V(G^n_k) = V(G)$ and $\{k, l\} \in E(G^n_k)$ if and only if one of the following two conditions is satisfied: (i) $\{k, l\} \in E(G)$ and, $k \neq j$ and $l \neq i$; (ii) $\{k, l\} \notin E(G)$ and, $k = i$ or $l = i$. The mapping $s_i(G) = G^n_k$ is called switching at i. It follows directly from the definition that $A(G^n_k) = A(G) - D + C$, where $D = \sum_{j \in N(i)} e_j e_i^T + \sum_{j \notin N(i)} e_j e_i^T$ and $C = \sum_{j \in N(i)} e_j e_i^T + \sum_{j \notin N(i)} e_j e_i^T$. Deciding if a graph G can be obtained from a graph H by switching is polynomial time equivalent to graph isomorphism. The switching operator with respect to k is the unitary operator $T_k : \mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^n}$ defined as

$$T_k|x_1 x_2 \ldots x_n\rangle = (-1)^{x_k} \sum_{i=1}^{n} x_i |x_1 x_2 \ldots x_n\rangle,$$

for $x_1, x_2, \ldots, x_n \in \{0, 1\}$. It is easy to see that for the graph states $|G\rangle$ and $|G^n_k\rangle$, we have $T_k |G\rangle = |G^n_k\rangle$. A group G acting (on the left) on a set Ω is transitive if for every $\alpha, \beta \in \Omega$ there is $g \in G$ such that $ga = \beta$. Let $\Omega_n = \{G : V(G) = \{1, 2, \ldots, n\}\}$. Ehrenfeucht et al. proved that the composition of local complementation and switching forms a transitive group acting on the set Ω_n. Let us denote by Ω^n_k the set of graph states of dimension k. We can then write:

Proposition 8 The composition of elements from the local Clifford group and switching operators forms a transitive group acting on the set Ω^n_k.

The meaning of this observation is clear: from a graph state $|G\rangle$ of a given dimension one can obtain any other graph state $|H\rangle$ of the same dimension by the application of elements from the local Clifford group and switching operators. The signed adjacency matrix of a graph G is the matrix $A^+(G)$ such that $A^+(G)_{i,j} = 1$ if $\{i, j\} \in E(G)$, $A^+(G)_{i,j} = -1$ if $\{i, j\} \notin E(G)$.

The spectrum of $A^+(G)$ is equal to the spectrum of $A^+(H)$ if the graphs G and H are isomorphic.
by switching. As a consequence, the spectrum of $A^+(G)$ does not seem to contain much information about the entanglement properties of G. In the figure below are drawn all (nonisomorphic) graphs on four vertices. An arrow between two graphs indicates that the graphs are in the same switching class; a dotted arrow indicates that the graphs are in the same local complementation class:

Notice that there are some graphs which are linked by both, local complementation and switching. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices of G such that adjacent vertices have different colors. Let $[G]$ be the switching class of G, that is the set of all graphs obtained by a sequence of switching on a graph G. If $\chi(G) = k$ then $2 \leq \chi(H) \leq 2k$, for all $H \in [G]$. If a switching class has a graph with chromatic number larger than 4 then it does not contain a bipartite graph, but the converse is it not necessarily true (Lemma 3.30). It is not immediate to understand how entanglement is modified by switching. However, on the light of Propositions switching is potentially useful in classifying graph states (see [11], for a work on the classification of graph states).

Acknowledgments

The author would like to thank Roland Bacher, Jens Eisert and Matthew Joffrey Parker for helpful comments, and Sibasish Ghosh for introducing him to graph states.
[38] Torsten Sillke, Graphs with maximal rank, www.mathematik.unibielefeld.de/~sillke