Printed Circuits Manufacturing Out of Standards

Francois Vasey
CERN 1211 Geneva 23

francois.vasey@cern.ch

CMS Tracker Hybrid Experience: a user and a manufacturer perspective

• A User:
 Francois Vasey, CERN 1211 Geneva 23
 On behalf of the CMS collaboration

• A Manufacturer:
 Hans Wyss, CICOREL
 Anne-Sophie Golsong

The CMS Tracker Front End Hybrid

- Multiple functions
 - Electrical
 - Mechanical
 - Thermal
- Multiple constraints
 - Interface to pre-defined elements
 - Mechanical
 - Electrical
 - Low mass
 - High reliability
 - Cheap
- Perceived as low profile, soft glue element

The Hybrid Layout

- 120μm min feature size
- Up to 768 electrical channels
- 17500 pcs

The Finished Hybrid

History

- Several technologies investigated
 - Thick film ceramic
 - 94H
 - Rigid FR4
 - Flex
- Several teams with several opinions
- CMS-Tracker eventually converges on Flex solution
 - Project late start in 2002
 - Few companies involved
 - Chips and mechanics already frozen or well advanced
 - Constraints are hard
- Several design change requests from users
 - Resulting in several flavors and several modifications
- Several difficulties at production start
 - Technological
 - Circuit
 - Assembly
 - Organizational
Technological difficulties, circuit

- Metal on flex
- Lamination on ceramic
- Via metallization
- Hidden defect
- Fast production / Slow QA feedback
- Irreversible addition of value when mounting hybrid on sensor module
- Large effort to recover

User recommendations

- Hybrids must be part of system level design from the start
 - Define and advertise hybrid related constraints early
- Hybrids for large scale detectors must be designed for volume manufacturability, not for cutting edge performance
 - Avoid state of the art technology
 - Add margin whenever possible
- Limit variants
- Hybrids must be designed for testability, with direct feedback possibility to production process
 - Include panel-level test structures and chip-based test schemes
- Production ramp up must be slow and allow full qualification
 - Count on multiple steps from development to production
- QA and QC must be robust with rapid feedback possibility
 - Manufacturer and user QA schemes must be synchronized
- Organizational structure must be clear and well defined
 - Members of the structure must trust each other and communicate frequently

Technological difficulties, assembly

- Bonding:
 - Chip pad structure optimized for ball bonding
 - Unsuitable chip pad size
 - Irregular pad quality on circuit (and on chip?)
 - Special dicing requirement
- Large effort to optimize and maintain bonding quality, several production stops
- Mixed bonding at company and CERN
 - Chip loading accuracy +/- 22um
 - No globe top possibility
 - Long term bond adherence is a prime concern
- ASIC LPCC Package difficult to inspect
 - No boundary scan possibility
 - Detailed analysis of all functional test results required

Organizational difficulties

- 12 hybrid variants
 - Transform a high volume production into a multi-batch logistic nightmare
 - Complex delivery schedule
 - All variants needed simultaneously
 - Difficult stock build up and management
 - Management of ancillary hardware becomes problematic (boxes, adapter cards, etc...)
- Heterogeneous CMS community
 - Unclear internal definition of responsibilities
 - Multiple interfaces to company
 - Incompatibility between academic and industrial ways

User recommendations

- Hybrid must be part of system level design from the start
 - Define and advertise hybrid related constraints early
- Hybrids for large scale detectors must be designed for volume manufacturability, not for cutting edge performance
 - Avoid state of the art technology
 - Add margin whenever possible
- Limit variants
- Hybrids must be designed for testability, with direct feedback possibility to production process
 - Include panel-level test structures and chip-based test schemes
- Production ramp up must be slow and allow full qualification
 - Count on multiple steps from development to production
- QA and QC must be robust with rapid feedback possibility
 - Manufacturer and user QA schemes must be synchronized
- Organizational structure must be clear and well defined
 - Members of the structure must trust each other and communicate frequently