Friedmann Equation for Brans Dicke Cosmology

M. Arık∗, M. C. Çalık† and M. B. Sheftel‡
Dept. of Physics, Boğaziçi Univ., Bebek, Istanbul, Turkey

April 26, 2006

Abstract

In the context of Brans-Dicke scalar tensor theory of gravitation, the cosmological Friedmann equation which relates the expansion rate \(H \) of the universe to the various fractions of energy density is analyzed rigorously. It is shown that Brans-Dicke scalar tensor theory of gravitation brings a negligible correction to the matter density component of Friedmann equation. Besides, in addition to \(\Omega_\Lambda \) and \(\Omega_M \) in standard Einstein cosmology, another density parameter, \(\Omega_\Delta \), is expected by the theory. This implies that if \(\Omega_\Delta \) is found to be nonzero, data will favor this model instead of the standard Einstein cosmological model with cosmological constant and will enable more accurate predictions for the rate of change of Newtonian gravitational constant in the future.

Recent observational data have strongly confirmed that we live in an accelerating universe [1] and have made it possible to determine the composition of the universe [2]-[4]. According to these observations, nearly seventy percent of the energy density in the universe is unclustered and has negative pressure by which it is driving an accelerated expansion [5]-[8]. Furthermore, the energy density of the vacuum is much smaller than the estimated values so far. By itself, acceleration seems to be much more understandable in the context of general relativity (cosmological constant) [9] and quantum field theory (quantum zero point energy); however, the very small and non-zero energy scale implied by the observations is not quite comprehensible. Because of these conceptual problems associated with the cosmological constant [10]-[13], alternative treatments to the problem have been produced and they are being used widely in the literature nowadays [13]-[17]. In such treatments, mostly, a scalar field \(\phi \) is considered together with a suitably chosen \(V(\phi) \) to make the vacuum energy vary with time. The reason for this is to get a model in which the current value of the cosmological constant can be expressed in a more natural way; without need of any fine tuning. In the literature, there exist number of studies on accelerated models in Brans Dicke theory [18]-[26]. For example, Sen et al [27]

∗metin.arik@boun.edu.tr
†cem.calik@boun.edu.tr
‡mikhail.sheftel@boun.edu.tr
have found the potential relevant to power law expansion in Brans-Dicke (BD) cosmology whereas Arık and Çalık [28] have shown that BD theory of gravity with the standard mass term potential \((1/2) m^2 \phi^2\) is a beneficial theory in both explaining the rapid primordial and slow late-time inflation. In this regard, we have chosen the underlying theory as a scalar tensor theory, especially, BD scalar tensor theory of gravitation since scalar-tensor theories are the most serious alternative to standard general relativity. The theory is parameterized by a dimensionless constant \(\omega\), as \(\omega \to \infty\) BD theory approaches to the Einstein theory [29]. Present limits of the constant \(\omega\) based on time-delay experiments [30]–[32] require \(\omega > 10^4 \gg 1\). Besides, since these theories have been found as the low energy limit of string theory and they provide appealing models for inflation, scalar tensor theories enable an interesting arena where the standard model can be tested. Hence, in this work, we aim to calculate the corrections, in the context of BD cosmology, to the famous Friedmann equation

\[
\left(\frac{H}{H_0}\right)^2 = \Omega_\Lambda + \Omega_R \left(\frac{a_0}{a}\right)^2 + \Omega_M \left(\frac{a_0}{a}\right)^3
\]

(1)

which relates the expansion rate \(H = \dot{a}/a\) of the universe to the energy density. The density parameter, \(\Omega\), is defined as the fractional ratio of the energy density to the critical energy density which is a special required density in order to make the geometry of the universe flat. The Friedmann equation is used for fitting the Hubble parameter, \(H\), to the measured density parameters \((\Omega_\Lambda, \Omega_R, \Omega_M)\) of the universe in such a way that \(\Omega_\Lambda + \Omega_R + \Omega_M = 1\). According to recent observational results for the present universe, we have \(\Omega_\Lambda \approx 0.75, \Omega_M \approx 0.25, \Omega_R \approx 0\) [33]. In the light of these values, one can conclude that the universe is mostly filled with non-baryonic matter and it seems that this non baryonic matter is responsible for the expansion of the universe solely.

In the context of (BD) theory [34] with self interacting potential and matter fields, the action in the canonical form is given by

\[
S = \int d^4x \sqrt{g}\left[\frac{1}{8\omega} \phi^2 R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m^2 \phi^2 + L_M\right].
\]

(2)

The signs of non-minimal coupling term and the kinetic energy term are properly adopted to \((+ - - -)\) metric signature. As in the cosmological approximation, \(\phi\) is spatially uniform, but varies slowly with time. As long as the dynamical scalar field \(\phi\) varies slowly, \(G_{eff}\), the effective gravitational constant, is defined as \(G_{eff}^{-1} = \frac{2\pi}{\omega} \phi^2\) by replacing the non-minimal coupling term \(\frac{1}{8\omega} \phi^2 R\) with the Einstein-Hilbert term \(\frac{1}{16\pi G_N} R\) where \(R\) is the Ricci scalar in the Einstein relativity. In natural units where \(c = \hbar = 1\), we define the Planck-length, \(L_P^2 = \omega/2\pi \phi_0^2\) where \(\phi_0\) is the present value of the scalar field \(\phi\). Thus, the dimension of the scalar field is \(L^{-1}\) so that the dimension of \(G_{eff}\) is \(L^2\). The potential term \(V(\phi)\) in the Lagrangian is composed of only a standard mass term \(\frac{1}{2} m^2 \phi^2\). \(L_M\), on the other hand, is decoupled from \(\phi\) as was assumed in the original BD theory. Hence, considering \(\phi\) does not couple to \(L_M\) as a matter field, we may consider a classical perfect fluid with the energy-momentum
tensor $T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, -p)$ where p is the pressure. The gravitational field equations derived from the variation of the action \mathcal{S} with respect to the Robertson-Walker metric are

$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, -p)$$

where p is the pressure. The gravitational field equations derived from the variation of the action (2) with respect to the Robertson-Walker metric are

$$\frac{3}{4\omega} \phi^2 \left(\frac{\dot{a}^2}{a^2} + \frac{k}{a^2}\right) - \frac{1}{2} \dot{\phi}^2 - \frac{1}{2} m^2 \phi^2 + \frac{3}{2\omega} \frac{\dot{a}}{a} \dot{\phi} \phi = \rho_M$$ \hspace{1cm} (3)

$$-\frac{1}{4\omega} \phi^2 \left(\frac{2\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2}\right) - \frac{1}{\omega} \ddot{a} \phi - \frac{1}{2\omega} \dddot{\phi} \phi - \left(\frac{1}{2} + \frac{1}{2\omega}\right) \phi^2 + \frac{1}{2} m^2 \phi^2 = p_M$$ \hspace{1cm} (4)

$$\ddot{\phi} + 3 \frac{\dot{a}}{a} \dot{\phi} + \left[\frac{m^2}{2\omega} \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2}\right)\right] \phi = 0$$ \hspace{1cm} (5)

where k is the curvature parameter with $k = -1$, 0, 1 corresponding to open, flat, closed universes respectively and $a(t)$ is the scale factor of the universe (dot denotes d/dt), M denotes everything except the ϕ field. The right hand side of the ϕ equation (5) is set to be zero due to the assumption that the matter Lagrangian L_M is independent of the scalar field ϕ. Instead of working with the field equations (3-5) stated in terms of $\phi(t), a(t)$ and their derivatives with respect to the cosmological time t. We define the fractional rate of change of ϕ as $F(a) = \dot{\phi}/\phi$ and the Hubble parameter as $H(a) = \dot{a}/a$, and rewrite the left hand side of the field equations (3-5) in terms of $H(a), F(a)$ and their derivatives with respect to the scale size of the universe a (prime denotes d/da)

$$H^2 - \frac{2\omega}{3} F^2 + 2 HF + \frac{k}{a^2} - \frac{2\omega}{3} m^2 = \left(\frac{4\omega}{3}\right) \frac{\rho_M}{\phi^2}$$ \hspace{1cm} (6)

$$H^2 + \left(\frac{2\omega}{3} + \frac{4}{3}\right) F^2 + 2 \frac{a}{3} H F + \frac{2a}{3} \left(\dot{H} + HF'\right) + \frac{k}{3a^2} - \frac{2\omega}{3} m^2 = \left(-\frac{4\omega}{3}\right) \frac{\rho_M}{\phi^2}$$ \hspace{1cm} (7)

$$H^2 - \frac{\omega}{3} F^2 - \omega HF + a \left(\frac{HH'}{2} - \frac{\omega}{3} HF'\right) + \frac{k}{2a^2} - \frac{\omega}{3} m^2 = 0.$$ \hspace{1cm} (8)

From these three equations it can be shown that the continuity equation for the matter-energy excluding the BD scalar field is also satisfied with the help of the ϕ equation (5)

$$\rho_M + 3 \left(\frac{\dot{a}}{a}\right) (\rho_M + \rho_M) = 0$$ \hspace{1cm} (9)

and hence, instead of considering the p equation solely as one of the dynamical equations to be satisfied, we choose continuity equation in addition to the density equation and the ϕ equation to be satisfied in any cosmological case we want to explain. That is because once the continuity equation is satisfied than p equation must already be satisfied automatically provided that \dot{a} is nonzero.

To eliminate the ϕ dependence in (6), we take the time derivative of both sides
of the ρ equation and after some rearrangements, we get (6) purely in terms of $H(a)$, $F(a)$, $\rho(a)$ and their derivatives with respect to a.

$$H'(H^2 + HF) + F'(H^2 - \frac{2\omega}{3}HF)$$

$$= \frac{H^3}{2} \left(\frac{\rho'}{\rho} \right) + \frac{2\omega}{3a} F^3 + H^2F \left[\left(\frac{\rho'}{\rho} \right) - \frac{1}{a} \right] + F^2H \left[-\frac{2}{a} - \frac{\omega}{3} \left(\frac{\rho'}{\rho} \right) \right]$$

$$+ \frac{k}{a^2} \left[H \left(\frac{\rho'}{2\rho} \right) + \frac{1}{a} \right] - \omega m^2 \left[H \left(\frac{\rho'}{3\rho} \right) - \frac{2F}{3a} \right]. \quad (10)$$

After rewriting (8) in the following form

$$3aHH' - 2\omega H a F' = -6H^2 + 2\omega F^2 + 6\omega HF - \frac{3k}{a^2} + 2\omega m^2 \quad (11)$$

we solve (10, 11) for H', F' and get the general form of the solution in the sense that once the curvature constant k and energy density in terms of a is given than H and F can be solved from the following equations:

$$H' = \frac{[\omega(\rho'/\rho) - 6]}{(2\omega + 3) aH} H^2 - \frac{[4\omega^2 + 2\omega + 2a\omega(\rho'/3\rho)]}{(2\omega + 3) aH} F^2 + \frac{[8\omega + 2a\omega(\rho'/\rho)]}{(2\omega + 3) aH} HF$$

$$- \frac{[2\omega^2 a(\rho'/3\rho) - 2\omega]}{(2\omega + 3) aH} m^2 + k \frac{[2\omega + \omega a(\rho'/2) - 3]}{(2\omega + 3) a^3 H}. \quad (12)$$

$$F' = \frac{[3a(\rho'/2\rho) + 6]}{(2\omega + 3) aH} H^2 - \frac{[8\omega + a\omega(\rho'/\rho) + 6]}{(2\omega + 3) aH} F^2 - \frac{[6\omega - 3a(\rho'/\rho) - 3]}{(2\omega + 3) aH} HF$$

$$- \frac{[\omega a(\rho'/\rho) + 2\omega]}{(2\omega + 3) aH} m^2 + k \frac{[6 + 3a(\rho'/2\rho)]}{(2\omega + 3) a^3 H}. \quad (13)$$

Hence, in the present epoch, to discover how the Hubble parameter H changes with the scale size of the universe a, we assume that the present universe is mostly flat and it necessarily obeys the $p_M = 0$ equation of state. Using (9), we find that the energy density ρ evolves with a in the same manner as in standard Einstein cosmology when the universe is solely governed by matter,

$$\rho = \frac{C}{a^3} \quad (14)$$

where C is an integration constant. Setting $k = 0$ and inserting this energy density into (12, 13), we get the following form of the equations to be solved:

$$H' = \frac{-1}{H(2\omega + 3)a} \left[3(2 + \omega)H^2 + 2\omega(\omega + 1)F^2 - 2\omega HF - 2\omega(\omega + 1)m^2 \right] \quad (15)$$

$$F' = \frac{1}{H(2\omega + 3)a} \left[\frac{3}{2}H^2 - (5\omega + 6) F^2 - 6(1 + \omega)HF + \omega m^2 \right]. \quad (16)$$
With the transformation \(u = \left(\frac{\omega}{\alpha} \right)^{\alpha} \), we rewrite (15, 16) in terms of \(H(u), F(u) \) and their derivatives with respect to \(u \):

\[
\frac{dH}{du} = \frac{1}{\alpha H(2\omega + 3)u} \left[3(2 + \omega) H^2 + 2\omega (\omega + 1) F^2 - 2\omega HF - 2\omega(\omega + 1)m^2 \right]
\]

(17)

\[
\frac{dF}{du} = \frac{-1}{\alpha H(2\omega + 3)u} \left[\frac{3}{2} H^2 - (5\omega + 6) F^2 - 6(1 + \omega) HF + \omega m^2 \right].
\]

(18)

Since these coupled equations are hard enough to be solved analytically for \(H \) and \(F \), our approach is to determine a perturbative solution in which both \(H \) and \(F \) vary about some constants \(H_\infty \) and \(F_\infty \) respectively:

\[
H = H_\infty + H_1 u + H_2 u^2 + ...
\]

(19)

\[
F = F_\infty + F_1 u + F_2 u^2 + ...
\]

(20)

where \(H_\infty, F_\infty, H_1, F_1, \alpha \), are all constants to be determined from the theory.

Plugging this perturbative solution into (17, 18) and keeping only the zeroth, first, second order terms of \(u \) and neglecting higher terms, we end up with two sets of solutions in the zeroth order

\[
H_\infty = \sqrt{\frac{(2\omega + 2)m}{(6\omega^2 + 17\omega + 12)}}; \quad F_\infty = \frac{H_\infty}{2(\omega + 1)}
\]

(21)

and

\[
H_\infty = \frac{2\sqrt{3} \omega m}{3\sqrt{3} \omega + 4}; \quad F_\infty = \frac{3}{2} H_\infty.
\]

(22)

Comparing the first order terms of \(u \), on the other hand, provides two linearly dependent equations for which the only possible solution is the trivial solution of \(H_1 = 0 \) and \(F_1 = 0 \),

\[
\{[6(\omega + 2) - \alpha(2\omega + 3)] H_\infty - 2\omega F_\infty \} H_1 + [-2\omega H_\infty + 4\omega(\omega + 1)F_\infty] F_1 = 0
\]

(23)

\[
[-3H_\infty + 6(\omega + 1)F_\infty] H_1 + \{[6 (\omega + 1) - \alpha(2\omega + 3)] H_\infty + 2(5\omega + 6)F_\infty \} F_1 = 0.
\]

(24)

Since the solution in which \(H_1 \) and \(F_1 \) are nonzero is much more plausible for our aim, the coefficient matrix is properly constructed from (23, 24) and its determinant is set to be zero to get the value of \(\alpha \) for which \(H_1 \) and \(F_1 \) need not be zero simultaneously. We get two different \(\alpha \) values

\[
\alpha = 3 + \frac{1}{1 + \omega}
\]

(25)
\(\alpha \sim \sqrt{\omega} \) \hspace{1cm} (26)

corresponding to the solution sets (21) and (22) respectively. In this regard, we note two things here:

- Concerning the solution of \(H \) we seek for, the solution (25) is much more precious than the solution (26) which approaches to infinity as \(\omega \) becomes infinitely large. On the other hand, in the same limit, (25) gives \(\alpha = 3 \) which is the well known term in a matter dominated universe solution of standard Einstein cosmology.

- The correction factor \(1/(1 + \omega) \) in the solution (26) is solely coming from the exact solutions of the field equations of BD theory.

Two linearly dependent equations are available when one compares the second order terms of \(u \):

\[
\begin{align*}
\{ [6(\omega + 2) - 2\alpha(2\omega + 3)] H_\infty - 2\omega F_\infty \} H_2 + [4\omega(\omega + 1)F_\infty - 2\omega H_\infty] F_2 \\
= [\alpha(2\omega + 3) - 3(\omega + 2)] H_1^2 - 2\omega(\omega + 1)F_1^2 + 2\omega H_1 F_1
\end{align*}
\] \hspace{1cm} (27)

\[
\begin{align*}
[3H_\infty - 6(\omega + 1)F_\infty] H_2 + \{ [2\alpha(2\omega + 3) - 6(\omega + 1)] H_\infty - 2(5\omega + 6)F_\infty \} F_2 \\
= -\frac{3}{2} H_1^2 + F_1^2 + [6(\omega + 1) - \alpha(2\omega + 3)] H_1 F_1.
\end{align*}
\] \hspace{1cm} (28)

Letting \(\alpha = 3 + 1/(\omega + 1) \) and \(F_\infty = H_\infty/2(\omega + 1) \) in (27) (28) gives \(H_2 \) and \(F_2 \) only in terms of \(H_\infty, H_1, F_1 \):

\[
H_2 = \frac{1}{(3\omega + 4)(2\omega + 3)H_\infty} \left[-(3\omega^2 + 8\omega + 6)H_1^2 + 2\omega(\omega + 1)^2 F_1^2 - 2\omega(\omega + 1)H_1 F_1 \right] \] \hspace{1cm} (29)

\[
F_2 = \frac{1}{(3\omega + 4)(2\omega + 3)H_\infty} \left[-(3\omega + 3) \frac{3}{2} H_1^2 + (\omega + 1)F_1^2 - (5\omega + 6)H_1 F_1 \right].
\] \hspace{1cm} (30)

Hence, with these perturbation constants found from theory, we can express \(H \) and \(F \) as

\[
H = H_\infty + H_1 \left(\frac{a_0}{a} \right)^{3+\frac{1}{17}} + H_2 \left(\frac{a_0}{a} \right)^{6+\frac{2}{17}} + \ldots
\] \hspace{1cm} (31)

\[
F = F_\infty + F_1 \left(\frac{a_0}{a} \right)^{3+\frac{1}{17}} + F_2 \left(\frac{a_0}{a} \right)^{6+\frac{2}{17}} + \ldots
\] \hspace{1cm} (32)

where (21) gives

\[
H_\infty = \left[2(\omega + 1) \sqrt{\omega m} \right] / \sqrt{(6\omega^2 + 17\omega + 12)}
\] \hspace{1cm} (33)
and
\[F_\infty = \frac{(\sqrt{m})}{\sqrt{(6\omega^2 + 17\omega + 12)}}. \] (34)

When the standard procedure of putting (31) into the standard Friedmann equation (1) and of fitting it to the present measured density parameters of universe is applied, we get
\[\left(\frac{H}{H_0} \right)^2 = \Omega_\Lambda + \Omega_M \left(\frac{a_0}{a} \right)^{3+\frac{1}{\omega}} + \Omega_\Delta \left(\frac{a_0}{a} \right)^{6+\frac{1}{\omega}} \] (35)

\[\Omega_\Lambda = \frac{H_\infty^2}{H_0^2} \simeq 0.75 \] (36)
\[\Omega_M = \frac{2H_\infty H_1}{H_0^2} \simeq 0.25 \] (37)
\[\Omega_\Delta = \frac{H_1^2 + 2H_\infty H_2}{H_0^2} \] (38)
where \(H_0^2 = H_\infty^2 + 2H_\infty (H_1 + H_2) + H_1^2 \). With the findings both from theory and observations, we can make the following statements:

1. Remarkable feature of this theory is that it enables us to estimate some dimensional parameters displayed in the theory. Using the ratio of (36) to (37), we get
\[H_1 \simeq 0.167 H_\infty \] where \(H_\infty \simeq 0.82 m \omega^{1/2} \) as \(\omega \to \infty \). If (31) is satisfied for \(H = H_0 \), one can get \(H_\infty \simeq 0.86 H_0 \) where \(H_0 \) is the present value of the Hubble parameter. Using \(H_\infty \simeq 0.86 H_0 \simeq 0.82 m \omega^{1/2} \) and \(\omega \) restriction \(\omega > 10^4 \gg 1 \), we may estimate \(m \) for a fixed \(H_0 \) as \(m \lesssim 10^{-2} H_0 \).

2. Investigating two cases for \(\Omega_\Delta \) can be meaningful for the sake of future measurements of the density parameter \(\Omega \):

- If we set \(\Omega_\Delta \simeq 0 \) together with \(H_2 \neq 0 \) which is consistent with today’s universe density compositions, by using (29) and (38) simultaneously, we get
\[F_1 \simeq 0.08 H_\infty / \omega, \quad F_2 \simeq -0.04 H_\infty / \omega \] as \(\omega \to \infty \). Remembering that \(F_\infty \simeq H_\infty / 2\omega \), we may say that \(F_\infty \) in (32) is the dominating term in today’s universe. This shows us that similar to the expansion rate of the universe \(H \), the rate of change of the Newtonian gravitational constant has approached the asymptotic regime.

- On the contrary, when we set \(\Omega_\Delta \neq 0 \) together with \(H_2 \simeq 0 \), we get
\[F_1 \simeq 0.2 H_\infty / \sqrt{\omega}, \quad F_2 \simeq -7 \times 10^{-3} H_\infty / \omega \] as \(\omega \to \infty \). Since \(F_\infty \simeq H_\infty / 2\omega \), we may now say that \(F_1 \) is the dominating term in (32). Namely, the rate of change of the Newtonian gravitational constant \(\left(\dot{G}_N / G_N \right) \) has not approached to the asymptotic regime yet. However, theory predicts that when the size of the universe
exceeds $a \gg 0.6\omega^{1/6}a_0$, then the term F_∞ will become dominant so that asymptotic regime will be satisfied for $\left(G_N/G_N\right)$.

In addition to these, using (36-38), we find that

$$\Omega_M = 2\sqrt{\Omega_\Lambda \Omega_\Delta}$$

and with the constraint $\Omega_\Lambda + \Omega_M + \Omega_\Delta = 1$, we express only in terms of Ω_Λ and Ω_M as

$$\Omega_M = 2\sqrt{\Omega_\Lambda} \left(1 - \sqrt{\Omega_\Lambda}\right).$$

If the ratio of today’s universe density parameters $\Omega_\Lambda/\Omega_M = 3$ is still satisfied in this $\Omega_\Delta \neq 0$ case, we predict,

$$\Omega_\Lambda \simeq 0.73$$
$$\Omega_M \simeq 0.24$$
$$\Omega_\Delta \simeq 0.03.$$

Hence, in the light of these results found, we may conclude that measurement of Ω_Δ will be important in two respects. Firstly, if Ω_Δ is found to be nonzero, this will indicate that data favors this model instead of standard Einstein cosmological model with cosmological constant. Secondly, it will also enable us to make more accurate predictions for the rate of change of G_N.

We would like to thank Burak Kaynak for his computational aid which provided us to be faster in seeing the results of the work and Prof. Engin Arik for her valuable suggestions and contributions to the paper. This work is supported by Bogazici University Research Fund, Project no:06B301.

References

