Semiclassical (QFT) and Quantum (String) anti-de Sitter Regimes: New Results

A. Bouchareb1,2, M. Ramón Medrano3,2 and N. G. Sánchez2,4

\textit{(1) Departament de Physique, Université d’ Annaba, B.P.12, El-Hadjar, Annaba 23000, Algeria.}

\textit{(2) Observatoire de Paris, LERMA, CNRS UMR 8112, 61, Avenue de l’Observatoire, 75014 Paris, France.}

\textit{(3) Departamento de Física Teórica, Facultad de Ciencias Físicas, Universidad Complutense, E-28040 Madrid, Spain}

(Dated: June 16, 2006)
Abstract

We compute the quantum string entropy $S_s(m, H)$ from the microscopic string density of states $\rho_s(m, H)$ of mass m in Anti de Sitter space-time. For high m, (high $Hm \to c/\alpha'$), no phase transition occurs at the Anti de Sitter string temperature $T_s = (1/2\pi k_B L_{\text{eff}} c^2/\alpha'$, which is higher than the flat space (Hagedorn) temperature t_s. ($L_{\text{eff}} = c/H$, the Hubble constant H acts as producing a smaller string constant α' and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT) Anti de Sitter temperature scale $T_{\text{sem}} = \hbar c/(2\pi k_B L_{\text{eff}})$. We compute the quantum string emission σ_{string} by a black hole in Anti de Sitter (or asymptotically Anti de Sitter) space-time (bhAdS). For $T_{\text{sem}} \ll T_s$, (early evaporation stage), it shows the QFT Hawking emission with temperature $T_{\text{sem}} \ll T_s$, (semiclassical regime). For $T_{\text{sem}} \to T_s$, it exhibits a phase transition into a Anti de Sitter string state of size $L_s = \ell_s^2/L_{\text{eff}}$, ($\ell_s = \sqrt{\hbar \alpha'/c}$), and Anti de Sitter string temperature T_s. New string bounds on the black hole emerge in the bhAdS string regime. The bhAdS string regime determines a maximal value for H: $H_{\text{max}} = 0.841 c/l_s$. The minimal black hole radius in AdS space time turns out to be $r_{g_{\text{min}}} = 0.841 l_s$, and is larger than the minimal black hole radius in dS space time by a numerical factor equal to 2.304. We find a new formula for the full Anti de Sitter entropy $S_{\text{sem}}(H)$, as a function of the usual Bekenstein-Hawking entropy $S_{\text{sem}}^{(0)}(H)$. For $L_{\text{eff}} \gg \ell_{\text{Planck}}$, i.e. for low $H \ll c/\ell_{\text{Planck}}$, or classical regime, $S_{\text{sem}}^{(0)}(H)$ is the leading term with its logaritmic correction, but for high $H \geq c/\ell_{\text{Planck}}$ or quantum regime, no phase transition operates, in contrast to de Sitter space, and the entropy $S_{\text{sem}}(H)$ is very different from the Bekenstein-Hawking term $S_{\text{sem}}^{(0)}(H)$

PACS numbers:

Keywords: Anti de Sitter background, semiclassical gravity, quantum gravity, quantum strings, black-hole
- Anti de Sitter background, classical/quantum duality

*Electronic address: norma.sanchez@obspm.fr, mrm@fis.ucm.es
I. INTRODUCTION AND RESULTS

The understanding of the semiclassical and quantum regimes of gravity in the contexts of quantum field theory and string theory respectively is particularly important for several reasons and has been the object of recent intensive study with two relevant examples: rotating black holes and de Sitter background in both regimes [1] [2]. Naturally in this context, one regime is the classical/quantum gravity dual of the other, in the precise sense of the usual classical/quantum (wave-particle) duality [3]-[6].

In this paper, we describe classical, semiclassical and quantum Anti de Sitter (AdS) regimes. A clear picture for Anti de Sitter background is emerging, going beyond the current picture, both for its semiclassical and quantum regimes. Although there is no relevant cosmological motivation to consider Anti de Sitter background, the understanding of semiclassical and quantum AdS regimes is particularly important for the following reasons: (i) AdS regimes are illustrative examples to compare and contrast with de Sitter regimes, and to see the effects of a negative cosmological constant; (ii) AdS space time provides asymptotic boundary conditions to Black Hole evaporation and also gives a natural infrared cutoff to the euclidean path integral formulation for quantum gravity, AdS space time acting as a large space box for it [7]-[9]; (iii) the results of classical and quantum string dynamics in Anti de Sitter space-time: Solving the classical and quantum string dynamics in conformal and non conformal invariant string backgrounds it shows that the physics is the same in the two class of backgrounds: conformal and non conformal. The mathematics is simpler in conformal invariant backgrounds (WZWN models), and the main physics, in particular the string mass spectrum, remains the same [10]-[14].

For strings in flat space-time, weak string coupling does not describe Anti de Sitter (AdS) background, or black holes in AdS background, but for strings in the full curved AdS background or in the black hole AdS background, as we consider here, AdS and the black hole are non-perturbative from the beginning. In the context of gravity, for the thermodynamical behavior of black holes or for the thermodynamics of strings in curved background, string-string interactions do not seem be crucial. We start from the beginning with the full non perturbative AdS or AdS-black hole background, so strong coupling effects are present even if no explicit string self interaction is added. Of course, more interactions can be included and explored, but strings in curved background provide at least a framework to deal with
strong gravity regimes.

A central object in string theory is the string density of states, in particular its high mass behavior, which depends on the different curved space-times in which strings propagate (this is the Hagedorn behavior in flat space time). For a given space-time, this mass behavior grows exponentially; aspects as the number of space-time dimensions, critical dimensions, type of strings, type of string theory only appear in the two dimensionless numerical coefficients of the exponential growth and its amplitude. This is precisely the importance of the density of string states, from which the string intrinsic temperature and entropy emerge, and from which, the basic important results of string thermodynamics, are derived.

An important object of our study is $\rho_s(m, H)$, the microscopic string density of states of mass m in AdS background. $\rho_s(m, H)$ is derived from the string density of levels $d(n)$ of level n and from the string mass spectrum $m(n, H)$ in AdS background. The mass formula $m(n, H)$ is obtained by solving the quantum string dynamics in AdS space time [11] [13] [14]. The density of levels $d(n)$ is the same in flat and in curved space-times. As a result, the mass formula $m(n, H)$ and $\rho_s(m, H)$ are different from the respective flat space-time string mass spectrum and flat space mass level density. The formulae $m(n, H)$ and $\rho_s(m, H)$ depend on the two characteristic lengths in the problem: the classical length $L_{ct} = c/H$, and the fundamental string length $\ell_s = \sqrt{\hbar \alpha'/c}$, or equivalently on the respective mass scales: $M_{ct} = c^2 L_{ct}/G$ (D=4) and $m_s = \ell_s/\alpha'$. Relevant combinations of them emerge in the mass formula $m(n, H)$ as the Anti de Sitter string length $L_s = \hbar/c M_s$ or Anti de Sitter string mass $M_s = L_{ct}/\alpha'$. Contrary to strings in de Sitter background, the temperature $T_s = M_s c^2 / 2\pi k_B$ is not a critical string temperature for strings in Anti de Sitter background. The mass spectrum and the density of mass levels of quantum string states in AdS background do not exhibit any upper mass bound as in dS background.

From the string density of states, $\rho_s(m, H)$, we obtain the string entropy $S_s(m, H)$. We find that no phase transition takes place at $m = M_s$, ie $T = T_s$, in contrast to strings in flat space time, de Sitter and black hole backgrounds. The entropy $S_s(m, H)$ of string states in AdS space time is larger than the string entropy for $H = 0$. The effect of a negative cosmological constant is to increase the entropy, while in dS space time the effect of a positive cosmological constant is to reduce the entropy.

The AdS string temperature $T_s = (L_s/\ell_s) t_s$ is higher than the flat space (Hagedorn) value t_s. This is so, since for high masses, the string temperature in AdS background is
T_s, instead of t_s. The flat space (Hagedorn) temperature t_s is the scale temperature in the low Hm regime. The constant H acts in the temperature as an "effective string tension" $(\alpha'_H)^{-1}$: a smaller $\alpha'_H = (\hbar/c)(H\alpha'/c)^2$, (and thus a higher tension). T_s turns out to be the precise quantum dual of the semiclassical (QFT) Anti de Sitter temperature scale $T_{sem} = \hbar c / (2\pi k_B L_{eff})$, the two temperatures satisfy: $T_s = t_s^2 T_{sem}^{-1}$.

There is no critical string temperature in AdS background, while there exists a critical temperature in dS background, as well as in the black hole backgrounds. In AdS background, the density of states and the entropy do not show any singular behavior at finite mass or temperature. As a consequence, there is no string phase transition of the Hagedorn type in AdS background.

For low $Hm \ll c/\alpha'$, the partition function of a string gas in AdS background shows a pole singularity at $T_{sem} \to t_s$. This transition, near the flat space string temperature t_s and for any dimension D, is the same as the string transition in flat space time (Carlitz/Hagedorn transition). This is also the same as the string transition far from the black hole in the Schwarszchild black hole space time, and as the string transition in the low curvature regime ($mH \ll c/\alpha'$) of dS background. The partition function for excited and highly excited strings in AdS background does not feature any singular behavior at T_s, in contrast to the string partition function in flat space time which shows a single pole temperature singularity (Carlitz transition), and also in contrast to the string partition function in dS background which shows a square root branch point singularity (de Vega-Sanchez transition). There is no string phase transition at T_s for massive and highly massive strings in AdS alone, that is for $Hm\alpha'/c \sim 1$ and for $Hm\alpha'/c \gg 1$, in contrast to strings in dS background.

We also consider the string regimes of a black hole in Anti de Sitter (or asymptotically) Anti de Sitter background ($bhAdS$). We compute the quantum string emission cross section σ_{string} by a Schwarschild black hole in Anti de Sitter background. For $T_{sem bhAdS} \ll T_s$, (early evaporation stage), σ_{string} shows the Hawking emission with temperature $T_{sem bhAdS}$, (semiclassical regime). For $T_{sem bhAdS} \to T_s$, σ_{string} exhibits a phase transition at $T_{sem bhAdS} = T_s$: the massive emission condensates into an AdS string state of Anti de Sitter string size L_s and AdS string temperature T_s.

For $m \ll M_s$, (low regime $Hm \ll c/\alpha'$) the $bhAdS$ string emission cross section shows the same singular behavior near t_s as the low Hm behavior of the AdS partition function, and as the quantum string emission by an asymptotically flat black hole, but here at the
bhAdS temperature. This is so, since in the bhAdS background the string mass scale for low string masses (temperatures) is the Hagedorn flat space time temperature t_s.

The evaporation of a black hole in AdS space time, from its early semiclassical or quantum field theory regime (Hawking radiation) towards a quantum string AdS regime (late stages), is seen as well from the black hole decay rate. In the early evaporation stages, the semiclassical black hole in AdS background decays thermally as a grey body at the Hawking temperature $T_{sem \ bhAdS}$ with the decay rate $\Gamma_{sem} \sim G(T_{sem \ bhAdS})^3$. As evaporation proceeds $T_{sem \ bhAdS}$ increases until it reaches the string AdS temperature T_s, the black hole itself becomes an excited string AdS state, decaying with a string width $\Gamma_s \sim \alpha' T_s^3$ into all kind of particles, with pure (non mixed) quantum radiation. For $T_{sem \ bhAdS} \to T_s$, the semiclassical black hole decay rate becomes precisely the quantum string decay Γ_s.

New string bounds on the black hole emerge in the bhAdS string regime, i.e. when $T_{sembhAdS} = T_s$. The bhAdS space time allows an intermediate string regime, not present in the Schwarzschild black hole alone ($H = 0$): in an asymptotically flat space time, the black hole radius r_g becomes l_s in the string regime; in an asymptotically AdS space time, when $T_{sem \ bhAdS} = T_s$, the black hole radius can have two different values depending on the AdS string size. There is a minimal AdS length $L_{c\ell} = 1.189 \ l_s$. The bhAdS string regime determines a maximal value for H: $H_{max} = 0.841 c/l_s$. The minimal black hole radius in AdS space time turns out to be $r_{gmin} = 0.841 \ l_s$, and is larger than the minimal black hole radius in dS space time by a numerical factor equal to 2.304.

By precisely identifying the semiclassical and quantum (string) Anti de Sitter regimes, we find a new formula for the Anti de Sitter entropy $S_{sem}(H)$ with quantum corrections included, and which is a function of the Bekenstein-Hawking entropy $S^{(0)}_{sem}(H)$. The classical AdS regime is like the classical dS regime, or the classical Schwarzschild black hole regime ($M_{c\ell} \gg m_{Pl}$), that is in this regime the leading term to the entropy is the Bekenstein-Hawking entropy. But for a large Hubble constant ($M_{c\ell} \sim m_{Pl}$), $S^{(0)}_{sem}(H)$ is subdominant and the whole entropy $S_{sem}(H)$ is different from the Bekenstein-Hawking entropy $S^{(0)}_{sem}(H)$. Contrary to de Sitter space, no phase transition occurs at $T \to T_{sem}$ in AdS space time. That is, there is no phase transition at $T \to t_{Pl}$, in the high curvature $H \to c/\ell_{Pl}$ or quantum AdS regime. This is so, since for AdS background, like for the AdS string entropy, no singularity at finite mass or finite temperature occurs in the density of states or in the entropy. Also contrary to de Sitter space, and to the rotating black hole (extremal transition), there is not
a square root branch point behavior in the mass (temperature) analogous to the thermal self-gravitating gas phase transition of point particles [15].

II. SEMICLASSICAL ANTI DE SITTER BACKGROUND

In static coordinates, the D-dimentional anti de Sitter (AdS) space-time is described by the metric

$$ds^2 = -B(r) \ c^2 \ dt^2 + B^{-1}(r) \ dr^2 + r^2 \ d\Omega_{D-2}^2$$

where:

$$B(r) = 1 + \frac{H^2 \ r^2}{c^2}$$

AdS space time is generated by a negative cosmological constant Λ, or a constant positive pressure density p satisfying the equation of state $\epsilon + p = 0$, with ϵ being a constant negative density of energy.

In terms of $H^2 \ (H^2 > 0)$, the cosmological constant Λ, and the scalar curvature R are given by

$$\Lambda = -\frac{(D-2)(D-1)}{2} \frac{H^2}{c^2}$$

$$R = -D(D-1) \frac{H^2}{c^2}$$

Notice that one can go from de Sitter (dS) to anti de Sitter (AdS) background, through the change $H \rightarrow iH$.

The characteristic AdS length, mass and temperature associated to $|\Lambda|$, or $|H|$ are given by:

$$L_{cl} = \sqrt{\frac{(D-2)(D-1)}{2} |\Lambda|} = \frac{c}{|H|}$$

$$M_{cl} = \frac{c^2}{G} \ L_{cl} = \frac{c^3}{G \ |H|} \quad (D=4)$$

$$T_{sem} = \frac{\hbar \ c}{2\pi \ k_B} \ \frac{1}{L_{cl}} = \frac{\hbar}{2\pi \ k_B \ |H|}$$

From Eqs. (11) and (12), it is clear that there is no event horizon in anti de Sitter space. Nevertheless, Eq. (7) defines the semiclassical AdS temperature. This a measure (in units of
temperature) of the semiclassical mass scale:

\[M_{\text{sem}} = \frac{m_{\text{pl}}^2}{M_{\text{cl}}} \]

(8)

Eq. (8) is for AdS the analogous of the Hawking temperature.

Analogously to de Sitter space-time, we can write the (zeroth order) AdS semiclassical entropy \(S^{(0)}_{\text{sem}}(H) \) (from now on we write \(|H| \equiv H\)):

\[S^{(0)}_{\text{sem}}(H) = \pi k_B \left(\frac{L_{\text{cl}}}{\ell_{\text{pl}}} \right)^2 = \pi k_B \left(\frac{M_{\text{cl}}}{m_{\text{pl}}} \right)^2 \]

(9)

where

\[\ell_{\text{pl}} = \sqrt{\frac{\hbar G}{c^3}} ; \quad m_{\text{pl}} = \sqrt{\frac{\hbar c}{G}} \]

(10)

\(\ell_{\text{pl}} \) and \(m_{\text{pl}} \) being the Planck length and Planck mass respectively, and \(M_{\text{cl}} \) is the (classical) mass scale of AdS background Eq. (6).

Eq. (9) is better expressed as

\[S^{(0)}_{\text{sem}}(H) = \frac{1}{2} \frac{M_{\text{cl}} c^2}{T_{\text{sem}}} \]

(11)

where \(T_{\text{sem}} \) is the semiclassical AdS temperature defined by Eq. (7). In terms of the classical and the semiclassical masses, \(T_{\text{sem}} \) is expressed as

\[T_{\text{sem}} = \frac{c^2}{2\pi k_B} \frac{m_{\text{pl}}^2}{M_{\text{cl}}} = \frac{1}{2\pi k_B} \frac{M_{\text{sem}} c^2}{2} \]

(12)

Eq. (9) or (11) is the Bekenstein-Hawking entropy for AdS background [16] [17]. It is the ordinary entropy expression for any ordinary system, where \(T_{\text{sem}} \) is the semiclassical temperature. \(T_{\text{sem}} \) is the Compton length of AdS space in the units of temperature, that is, the temperature scale of the semiclassical gravity properties for which the mass scale is precisely \(M_{\text{sem}} \) Eq. (8). This semiclassical or intermediate energy regime interpolates between the classical and the quantum regimes of gravity. We discuss more on these regimes in Section (IX).

The full semiclassical entropy \(S_{\text{sem}}(H) \) is related to the semiclassical density of states \(\rho_{\text{sem}}(H) \) through the relation

\[\rho_{\text{sem}}(|\Lambda|) = e^{\frac{S_{\text{sem}}(|\Lambda|)}{k_B}} \]

(13)

The full semiclassical AdS entropy will be considered in Section (IX).
III. QUANTUM STRING ENTROPY IN ANTI DE SITTER BACKGROUND

The full string entropy $S_s(|\Lambda|)$ is related to the microscopic string density of states $\rho_s(|\Lambda|)$ by

$$\rho_s(|\Lambda|) = e^{\frac{S_s(|\Lambda|)}{k_B}}$$ \hspace{1cm} (14)

For high n, the mass formula for quantum strings in an anti de Sitter background is

$$\frac{m}{m_s} \simeq n \left(\frac{1}{n} + \left(\frac{m_s}{M_s} \right)^2 \right)^{1/2}$$ \hspace{1cm} (15) \hspace{1cm} open strings

$$\frac{m}{m_s} \simeq 2n \left(\frac{1}{n} + \left(\frac{m_s}{M_s} \right)^2 \right)^{1/2}$$ \hspace{1cm} (16) \hspace{1cm} closed strings

m_s and M_s are given by

$$m_s = \sqrt{\frac{\hbar}{\alpha' c}} = \ell_s \quad ; \quad M_s = \frac{L_{ct}}{\alpha'} = \frac{c}{\alpha' H} \quad , \quad \frac{m_s}{M_s} = \frac{\ell_s}{L_{ct}} = \frac{H}{c} \ell_s$$ \hspace{1cm} (17)

α' is the fundamental string constant, $(\alpha'^{-1}$ is a linear mass density), m_s and ℓ_s are the fundamental (flat space) string mass and length respectively, L_{ct} is given by Eq. (5) and M_s is the characteristic string mass in AdS. Furthermore, M_s defines the quantum string Anti de Sitter length L_s:

$$L_s = \frac{\hbar}{M_s c} = \left(\frac{L_{ct}}{\alpha'} \right)^2 = \frac{\hbar \alpha'}{c^2 H}$$ \hspace{1cm} , \hspace{1cm} (18)

and the string AdS temperature T_s:

$$T_s = \frac{1}{2\pi k_B M_s c^2} = \frac{\hbar c}{2\pi k_B} \frac{1}{L_s} = \frac{1}{2\pi k_B} \frac{c^3}{H \alpha'}$$ \hspace{1cm} (19)

As we will see in Sections \[11\] \[13\] \[14\] and \[16\] \[18\], T_s plays a relevant role as a limiting temperature.

For higher mass states (very large n), the mass spectrum behavior is

$$m \simeq n \left(\frac{m_s^2}{M_s} \right) = \frac{n}{\alpha'} \left(\frac{L_{ct}^2}{L_s} \right) = n \left(\frac{\hbar}{c} \right) \left(\frac{H}{c} \right)$$ \hspace{1cm} (20)

which differs drastically from the flat space time string behavior, as well as from the de Sitter high mass string behavior $m \simeq m_s \sqrt{n}$.

Notice that the ratio (m_s^2/M_s) does not depend on the string constant α' (Eqs. (17), (5)):

$$m \sim n \frac{\hbar}{c L_{ct}}$$ \hspace{1cm} (21)
Thus, for high \(m \), the characteristic anti de Sitter length contains \(n \) times the string Compton wave length: \(L_{\text{cd}} \sim n \left(\frac{\hbar}{cm} \right) \).

From Eqs. (15) and (16), in the limit \(|\Lambda| \to 0 \) (see Eqs. (5) and (17)), we recover the flat space time string spectrum:

\[
m^2 \simeq m_s^2 n \quad \text{(open),} \quad m^2 \simeq m_s^2 4n \quad \text{(closed)} \tag{22}
\]

In order to derive \(\rho_s(m, |\Lambda|) \), let us notice that the degeneracy \(d_n(n) \) of level \(n \) (counting of oscillator states) is the same in flat and in curved space time. The differences, due to background curvature, enter through the relation \(m = m(n, H) \) of the mass spectrum. As is known, asymptotically for high \(n \), the degeneracy \(d_n(n) \) behaves universally as

\[
d_n(n) = n^{-a'} e^{b \sqrt{n}} \tag{23}
\]

where the constants \(a' \) and \(b \) depend on the space time dimensions and on the type of strings; for bosonic strings:

\[
b = 2 \pi \sqrt{\frac{D-2}{6}}; \quad a' = \frac{D+1}{4} \quad \text{(open)}; \quad a' = \frac{D+1}{2} \quad \text{(closed)} \tag{24}
\]

Let us observe that the density \(\rho_s(m, |\Lambda|) \) of mass levels and the level degeneracy \(d_n(n) \) satisfy

\[
\rho_s(m, |\Lambda|) d \left(\frac{m}{m_s} \right) = d_n(n) \, dn
\]

ie.

\[
\rho_s(m, |\Lambda|) \simeq \frac{m}{m_s} \left[\frac{d_n(n)}{g(n)} \right]_{n=n(m)} \tag{25}
\]

where \((m/m_s)^2 \simeq g(n) \); \(g(n) \) is read directly from the r.h.s of Eqs. (15) and (16).

We obtain then, for open strings, the following density of mass levels:

\[
\rho_s(m, |\Lambda|) \simeq \frac{m}{m_s} \left[\frac{-1 + \sqrt{1 + 4 \left(\frac{m}{m_s} \right)^2}}{2 \left(\frac{m}{m_s} \right)^2} \right]^{-a'} \exp \left\{ b \left[\frac{-1 + \sqrt{1 + 4 \left(\frac{m}{m_s} \right)^2}}{2 \left(\frac{m}{m_s} \right)^2} \right] \right\}^{1/2} \tag{27}
\]

Analogously, for closed strings:

\[
\rho_s(m, |\Lambda|) \simeq \frac{m}{m_s} \left[\frac{-1 + \sqrt{1 + \left(\frac{m}{m_s} \right)^2}}{2 \left(\frac{m}{m_s} \right)^2} \right]^{-a'} \exp \left\{ b \left[\frac{-1 + \sqrt{1 + \left(\frac{m}{m_s} \right)^2}}{2 \left(\frac{m}{m_s} \right)^2} \right] \right\}^{1/2} \tag{28}
\]
\(\rho_s \) depends on \(|\Lambda|\) through \(M_s \). Notice that in anti de Sitter background, \(\rho_s \) does not exhibit any branch point singularity as in de Sitter case \(^2\).

For \(|\Lambda| \to 0\), we recover the flat space time string solutions:

\[
\rho_s \left(\frac{m}{m_s} \right) \simeq \left(\frac{m}{m_s} \right)^{-a} \sqrt{\frac{2}{\Delta_s}} e^{b \left(\frac{m}{m_s} \right)} \quad \text{(closed)}
\]

and

\[
\rho_s \left(\frac{m}{m_s} \right) \simeq \left(\frac{m}{m_s} \right)^{-a} e^{b \left(\frac{m}{m_s} \right)} \quad \text{(open)}
\]

where \(a = 2a' - 1 \).

Several expressions for the exact \(\rho_s (m, H) \) are useful depending on the different behaviors we would like to highlight: the flat \(H=0 \) limit, the low mass, or the high mass behavior.

\(\rho_s (m, H) \), Eq. (27) or (28), can be expressed in a more compact way as:

\[
\rho_s (m, H) \simeq \left(\frac{m}{\Delta_s M_s} \right)^{-a} \left(\frac{M_s}{m_s} \sqrt{\frac{\Delta_s - 1}{2}} \right)^{-a} e^{b \left(\frac{m}{m_s} \sqrt{\Delta_s} \right)} \quad \text{(31)}
\]

where

\[
\Delta_s \equiv \sqrt{1 + \left(\frac{m}{M_s} \right)^2} \quad \text{(32)}
\]

Let us introduce the (zeroth order) string entropy \(S_s^{(0)} \) in flat space time:

\[
S_s^{(0)} = \frac{1}{2} b k_B \left(\frac{m}{m_s} \right) = \frac{1}{2} m c^2 t_s \quad \text{(closed)} \quad \text{(33)}
\]

\[
S_s^{(0)} = b k_B \left(\frac{m}{m_s} \right) = m c^2 t_s \quad \text{(open)} \quad \text{(34)}
\]

where

\[
t_s = \frac{1}{b k_B} m_s c^2 \quad \text{(35)}
\]

being \(t_s \) the flat space string temperature.

Therefore, from Eqs. 27, 28, 27 and 28, the mass density of levels \(\rho_s (m, H) \) for both open and closed strings can be expressed, in terms of \(S_s^{(0)} \), as:

\[
\rho_s (m, H) = \left(\frac{S_s^{(0)}}{k_B \sqrt{f(x)}} \right)^{-a} e^{b \left(\frac{m}{m_s} \sqrt{f(x)} \right)} \frac{1}{\sqrt{(1 + 4x^2)f(x)}} \quad \text{(36)}
\]

\[
a = \frac{(D - 1)}{2} \quad \text{(open)}, \quad a = D \quad \text{(closed)} , \quad f(x) = -1 + \sqrt{1 + 4x^2} \quad \text{(37)}
\]
x being the dimensionless variable

$$x(m, H) \equiv \frac{1}{2} \left(\frac{m}{M_s} \right) = \frac{m_s S_s^{(0)}}{b M_s k_B}$$ \hspace{1cm} (38)

In terms of Δ_s, Eq. (32), we have:

$$\rho_s(m, H) \simeq \frac{1}{\Delta_s} \sqrt{\frac{1 + \Delta_s}{2}} \left(\frac{S_s^{(0)}}{k_B} \sqrt{\frac{2}{1 + \Delta_s}} \right)^{-a} e^{\left(\frac{S_s^{(0)}}{k_B} \sqrt{\frac{1}{1 + \Delta_s}} \right)}$$ \hspace{1cm} (39)

$$\Delta_s \equiv \sqrt{1 + 4x^2} \quad , \quad f(x) = \frac{2}{1 + \Delta_s}$$ \hspace{1cm} (40)

For small x, (small $H ma'/c$), $f(x)$ can be naturally expressed as a power expansion in x. In particular, for $H = 0$, we have $x = 0$ and $f(x) = 1$, and we recover the flat space string solution:

$$\rho_s(m) \simeq \left(\frac{S_s^{(0)}}{k_B} \right)^{-a} e^{\left(\frac{S_s^{(0)}}{k_B} \right)}$$ \hspace{1cm} (41)

For $x \ll 1$, i.e. $m \ll M_s$, the corrections to the flat ($H = 0$) solution are given by:

$$\rho_s(m, H)_{m \ll M_s} \sim \left(\frac{m}{m_s} \right)^{-a} e^{\frac{1}{k_B} \left(\frac{m}{m_s} \right)^{\frac{2}{4}} \left[1 + \frac{1}{2} \left(\frac{m}{m_s} \right)^{\frac{2}{4}} + O \left(\frac{m}{m_s} \right)^{\frac{3}{4}} \right]}$$ \hspace{1cm} (42)

From Eqs. (14), (36) we can read the full string entropy in Anti de Sitter space :

$$S_s(m, H) = \hat{S}_s^{(0)}(m, H) - a k_B \ln \left(\frac{S_s^{(0)}(m, H)}{k_B} \right) - k_B \ln F(m, H)$$ \hspace{1cm} (43)

$$\hat{S}_s^{(0)}(m, H) \equiv S_s^{(0)}(f(x) \sqrt{f(x)}) \quad , \quad F(m, H) \equiv \sqrt{1 + 4x^2} f(x)$$ \hspace{1cm} (44)

that is :

$$S_s(m, H) = \sqrt{f(x)} S_s^{(0)} - a k_B \ln \left(\frac{\sqrt{f(x)} S_s^{(0)}}{k_B} \right) - k_B \ln \sqrt{f(x)} - k_B \ln \sqrt{1 + 4x^2}$$ \hspace{1cm} (45)

The string mass domain in Anti de Sitter background is $0 \leq m \leq \infty$, i.e. $0 \leq x \leq \infty$, (which implies $1 \leq \Delta_s \leq \infty$, i.e. $0 \leq f(x) \leq 1$). Notice that for de Sitter background, $\Delta_s = \sqrt{1 - 4x^2}$ and the string mass domain is 2: $0 \leq m \leq M_s$, i.e. $0 \leq x \leq 1/2$, (which implies for de Sitter background $0 \leq \Delta_s \leq 1$, i.e. $1 \leq f(x) \leq 2$).

The entropy $S_s(m, H)$ of string states in Anti de Sitter space is larger than the string entropy for $H = 0$. The effect of a negative cosmological constant is to increase the entropy, while in de Sitter space the effect of a positive cosmological constant is to reduce the entropy. For low masses $m \ll M_s$, the entropy is a series expansion in $(H ma'/c) \ll 1$, that is like
a low H expansion around the flat $H = 0$ solution, $S_s^{(0)}$ being its leading term. But for intermediate masses $m \rightarrow M_s$, that is $(Hm\alpha'/c) \rightarrow 1$, and for high masses $m >> M_s$, ie high $Hm\alpha'/c) >> 1$, the situation is very different as we see it below.

Eq. (45) is the full string entropy in Anti de Sitter background. Moreover, Eq. (43) for $S_s(m, H)$ allows us to write in Section (IX) the whole expression for the Anti de Sitter entropy $S_{sem}(H)$, as a function of the Bekenstein-Hawking Anti de Sitter entropy $S_{sem}^{(0)}(H)$.

IV. HIGH MASS BEHAVIOR. ABSENCE OF STRING BRANCH POINT PHASE TRANSITION IN ANTI DE SITTER BACKGROUND

The mass spectrum and the density of mass levels of quantum string states in AdS background (Eqs. (27) and (28)) do not exhibit explicitly, any upper mass bound as in de Sitter space time. In the de Sitter background, M_s appears as a branch point in the mass spectrum and mass density of levels.

In Anti de Sitter background, the behavior of the string mass density of levels $\rho_s(m, |\Lambda|)$ for $m \sim M_s$ (Eqs. (27) and (28)), is

$$\rho_s(m \sim M_s) \sim \left(\frac{M_s}{m_s} \right)^{-a} \exp \left\{ \bar{b} \frac{M_s}{m_s} \right\}$$

(46)

where:

$$\bar{b} = b\left(\frac{\sqrt{5} - 1}{2} \right)^{1/2}$$

for open strings, and

$$\bar{b} = b\left(\frac{\sqrt{2} - 1}{2} \right)^{1/2}$$

for closed strings.

For $m \gg M_s$, $\rho(m, |\Lambda|)$ for open strings Eq. (27), behaves as:

$$\rho_s (m \gg M_s) \sim \left(\frac{m}{m_s} \right)^{-\left(\frac{1+a}{2} \right)} \left(\frac{M_s}{m_s} \right)^{\left(\frac{1-a}{2} \right)} \exp \left\{ \frac{b}{m_s} \sqrt{m M_s} \right\}$$

(47)

and for closed strings, Eq.(28):

$$\rho_s (m \gg M_s) \sim \left(\frac{m}{m_s} \right)^{-\left(\frac{1+a}{2} \right)} \left(\frac{M_s}{m_s} \right)^{\left(\frac{1-a}{2} \right)} \exp \left\{ \frac{b}{m_s} \sqrt{m M_s} \right\}$$

(48)

Thus, for intermediate or high masses $m \sim M_s$, and for very high masses $m \gg M_s$, the entropy behaves respectively as:

$$S_s(m \sim M_s) = k_B \left(\frac{b M_s}{m_s} \right)^a - a k_B \ln \left(\frac{M_s}{m_s} \right)$$

(49)
\[S_s(m \gg M_s) = k_B \left(\frac{b}{m_s} \sqrt{\frac{m M_s}{2}} \right) - \left(\frac{1 + a}{2} \right) k_B \ln \left(\frac{m}{m_s} \right) - \left(\frac{1 - a}{2} \right) k_B \ln \left(\frac{M_s}{m_s} \right) \]

(50)

Or, in terms of temperature:

\[S_s(T \sim T_s) = k_B \left(\frac{T_s}{t_s} \right) - ak_B \ln \left(\frac{T_s}{t_s} \right) \]

(51)

\[S_s(T \gg T_s) = k_B \left(\frac{1}{t_s} \sqrt{\frac{T T_s}{2}} \right) - \left(\frac{1 + a}{2} \right) k_B \ln \left(\frac{T}{t_s} \right) - \left(\frac{1 - a}{2} \right) k_B \ln \left(\frac{T_s}{t_s} \right) \]

(52)

\[T = \frac{1}{2\pi k_B m c^2}. \]

(53)

We see that for very large \(m \), \((m \gg M_s) \), the leading asymptotic behavior of the AdS string mass density of states grows like \(\rho_s \sim e^{\sqrt{mc/\hbar H}} \) instead of \(e^{m/m_s} \) as in flat space time Eqs. (29) and (30). \(\rho_s(m, H) \) expresses in terms of the typical mass scales in each domain: \(m/m_s \) (as in flat space) for low masses, \(M_s/m_s = (c/H)\sqrt{c/\hbar \alpha'} \) for intermediate masses, \(\sqrt{mM_s/m_s} = c\sqrt{m/\hbar H} \) for very high masses, and there is no extra singular factor for high masses as it is the case in de Sitter space. Notice that for the very heavy strings, the mass scale turns out determined by \(\hbar H/c^2 \) and not by \(\sqrt{\hbar/\alpha'c} \).

The above new features translate into the excited string entropy behavior Eqs.(50)-(50) or (51)-(52). We see how the entropy behavior \((m/m_s)\), which in AdS background is a low mass or low curvature behavior \((H m \alpha'/c << 1)\), does become \(M_s/m_s\) and then split into the highly excited entropy behavior \(\sqrt{mM_s/m_s}\) in the high mass or high curvature \((H m \alpha'/c >> 1)\) regime. As \(H m \) increases: \(m/m_s \rightarrow M_s/m_s \rightarrow \sqrt{mM_s/m_s}\).

Furthermore, there is no critical string temperature in AdS background, while there exists a critical string temperature in de Sitter background, as well as in the black hole backgrounds. The density of states and entropy do not show any singular behavior at finite mass or temperature in AdS background. The partition function for a gas of strings in AdS background is defined for all temperature. As a consequence, there is no string phase transition of the Hagedorn type in AdS background. We explicitly show it in Section (V) below.

For \(m \sim M_s \), the string is as massive as the background, in other words, the string itself becomes the background, or conversely, the background becomes the string. As a consequence, \(M_s \) and its corresponding temperature \(T_s \) must be truly considered in practice as limiting values for the string mass and string temperature respectively in AdS background.
When the string mass becomes M_s, the string size L_s (Compton length for M_s) becomes L_{cf}, the string becomes "classical" reflecting the classical properties of the background, or the background becomes quantum. M_s is the mass of the background M_d Eq. (6), (with α' instead of G/c^2): for $m \to M_s$ the string becomes the "background". Conversely, and interestingly enough, string back reaction supports this fact: M_s is the mass of AdS background in its string regime, an Anti de Sitter phase with mass M_s Eq. (17) and temperature T_s Eq. (19) is sustained by strings. (L_s, M_s, T_s), Eqs. (17)-(19), are the intrinsic size, mass and temperature of AdS background in its string (high H) regime.

V. PARTITION FUNCTION OF STRINGS IN ANTI DE SITTER BACKGROUND. ABSENCE OF STRING CRITICAL TEMPERATURE IN ADS BACKGROUND

The canonical partition function is given by

$$\ln Z = \frac{V_{D-1}}{(2\pi)^{D-1}} \int_{m_0}^{\infty} d\left(\frac{m}{m_s}\right) \rho_s(m, |\Lambda|) \int d^{D-1} k \ln \left\{ \frac{1 + \exp\left\{ -\beta_{sem}\left[(m^2 c^2 + h^2 k^2 c^2)^{1/2}\right]\right\}}{1 - \exp\left\{ -\beta_{sem}\left[(m^2 c^2 + h^2 k^2 c^2)^{1/2}\right]\right\}} \right\}$$

where supersymmetry has been considered for the sake of generality; $D - 1$ is the number of space dimensions; $\rho_s(m, |\Lambda|)$ is the mass density of states in AdS background; $\beta_{sem} = (k_B T_{sem})^{-1}$ and T_{sem} is the anti de Sitter characteristic semiclassical temperature Eq. (7); m_0 is the lowest mass for which the asymptotic behavior of $\rho_s(m, |\Lambda|)$ is valid.

From Eq. (54), we have

$$\ln Z = 4V_{D-1} \frac{c}{(2\pi)^{D/2} \beta_{sem}^{D/2} h^{D-1}} \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^{D/2}} \int_{m_0}^{\infty} d\left(\frac{m}{m_s}\right) \rho_s(m, H) m^{D/2} K_{D/2} \left[\beta_{sem}(2n - 1)mc^2\right]$$

(55)

Considering the asymptotic behaviour of the Bessel function $K_\nu(z)$

$$K_\nu(z) \sim \left(\frac{\pi}{2z}\right)^{1/2} e^{-z}$$

(56)

and the leading order, $n = 1$ ($\beta_{sem} \ m \ c^2 \gg 1$), we have

$$\ln Z \simeq 2V_{D-1} \frac{1}{(2\pi)^{D/2} \beta_{sem}^{D/2} h^{D-1}} \int_{m_0}^{\infty} d\left(\frac{m}{m_s}\right) \rho_s(m, |\Lambda|) m^{D/2} e^{-\beta_{sem} mc^2}$$

(57)
(the factor 2 comes from supersymmetry).

$\rho_s(m,|\Lambda|)$ has a different behavior from flat space time and from de Sitter background. It is crucial to notice here that there is not a mass upper bound as in de Sitter case, nevertheless M_s Eq. (17) fixes a mass reference in anti de Sitter space time, beyond which AdS string states become highly massive. Let us then analyze $\ln Z$, at significant mass ranges in relation with the string anti de Sitter scale M_s.

For $m \ll M_s$, the $\rho_s(m,|\Lambda|)$ leading behavior is given by the flat space solution. From Eqs. (30) and (57), we have for any D-dimensions

$$
\ln Z \sim \frac{2V_{D-1}}{(2\pi)^{D-1}} \frac{m_s^{D-3}}{h^2 \beta_{sem}^2} \frac{1}{(\beta_{sem} - \beta_s^2)} e^{-(\beta_{sem} - \beta_s) m_0 c^2} \quad (58)
$$

where $\beta_s = (k_B t_s)^{-1}$, t_s is given by Eq. (35).

We see that the canonical partition function, for low $H m \ll c/\alpha'$, shows a pole singularity at $T_{sem} \to t_s$, Eqs.(1) and (35). This transition, near the flat space string temperature t_s, and for any space time dimension D, is the same as the string transition in flat space time (Carlitz/Hagedorn transition [18]). This is also the same as the string transition far from the black hole in the Schwarzschild black hole space-time, and as the string transition in the low curvature regime ($mH \ll c/\alpha'$) of de Sitter space time. For low temperatures $\beta_{sem} \gg \beta_s$, (i.e. $T_{sem} \ll t_s$), we recover the non singular Q.F.T exponential decreasing behavior characterized by T_{sem}:

$$
\ln Z \simeq V_{D-1} \left(\frac{1}{h^2 \beta_s \beta_{sem}} \right)^{\frac{D-1}{2}} e^{-\beta_{sem} m_0 c^2} \quad (59)
$$

For $m \sim M_s$, $\rho_s(m,|\Lambda|)$ behaves as given by Eq.(46) and the leading behavior for the canonical partition function $\ln Z$ is:

$$
\ln Z_{m\sim M_s} \sim \frac{2 V_{D-1}}{(2\pi)^{D-1}} \frac{m_s^{D-3}}{h^2 \beta_{sem}^2} \frac{e^{\frac{3}{4} \beta_{AdS}}}{e^{\beta_{AdS} (\beta_s - 2\pi \beta_{sem})}} \quad (60)
$$

For $m \gg M_s$, the behavior of the string mass density of levels $\rho_s(m,|\Lambda|)$ is given by Eq.(47), and the leading behavior for the canonical partition function $\ln Z$ is similar to the $m \sim M_s$ behavior:

$$
\ln Z_{m\gg M_s} \sim \frac{2 V_{D-1}}{(2\pi)^{D-1}} \frac{m_s^{D-3}}{h^2 \beta_{sem}^2} \frac{e^{\frac{3}{4} \beta_{AdS}}}{e^{\beta_{AdS} (\beta_s - 2\pi \beta_{sem})}} \quad (61)
$$
where

\[\beta_{s\, AdS} = (k_B T_s)^{-1}, \]

and \(T_s \) is given by Eq.(19).

We see that the canonical partition function \(\ln Z \) for excited and highly excited strings in \(AdS \) background does not feature any singular behavior at \(T_s \) in contrast to the string partition function in flat space time which shows a single pole temperature singularity (Carlitz transition), and in contrast to the string partition function in de Sitter space-time which shows a branch point singularity (de Vega-Sanchez transition) [15]. Eqs.(58),(61) show that there is no string phase transition at \(T_s \) for massive and highly massive strings in \(AdS \) space-time, that is for \(H m_{\alpha'}/c \sim 1 \) and for \(H m_{\alpha'}/c > 1 \), in contrast to strings in \(dS \) space time.

VI. SCHWARZSCHILD BLACK HOLE - ANTI DE SITTER BACKGROUND

The D-dimensional Schwarzschild black hole - anti de Sitter space-time (bhAdS) is described by the metric

\[ds^2 = -b(r) c^2 dt^2 + b^{-1}(r) dr^2 + r^2 d\Omega_{D-2} \]

where

\[b(r) = 1 - \frac{r_g}{r} + \left(\frac{r}{L_{c\ell}} \right)^2, \quad r_g = \left(\frac{16\pi G M}{c^2(D-2) A_{D-2}} \right)^{\frac{1}{D-3}}, \quad A_{D-2} = \frac{2\pi^{\frac{(D-1)}{2}}}{\Gamma\left(\frac{(D-1)}{2}\right)} \]

\(r_g \) being the Schwarzschild gravitational radius, and \(L_{c\ell} \) is given by Eq. (5).

For \(D = 4 \), the equation \(b(r) = 0 \) has one real positive solution, which is the black hole horizon \(r_h \). The black hole surface gravity is defined by

\[\mathcal{K}_{bhAdS} = \frac{c^2}{2} \left| \frac{db(r)}{dr} \right|_{r=r_h} \]

and the black hole QFT temperature (Hawking temperature) in an AdS background is given by

\[T_{sem\, bhAdS} = \frac{\hbar}{2\pi k_B c} \mathcal{K}_{bhAdS} \]

It is useful to express \(T_{sem\, bhAdS} \) as
\[T_{\text{sem } bh\text{AdS}} = \frac{\hbar c}{2 \pi k_B} \frac{1}{L_{bh\text{AdS}}} \]
\[(67) \]

where, for \(r_h \simeq r_g \), \(L_{bh\text{AdS}} \) is given by:
\[L_{bh\text{AdS}} = 2r_g \left(1 + 2 \left(\frac{r_g}{L_{\text{ce}}} \right)^2 \right)^{-1} \]
\[(68) \]

With these expressions for the semiclassical \(bh\text{AdS} \) background we are prepared to compute the quantum emission of strings by a Schwarzschild black hole in the anti de Sitter background.

\section{VII. QUANTUM STRING EMISSION BY A BLACK HOLE IN ANTI DE SITTER BACKGROUND}

The quantum field emission cross section \(\sigma_{QFT}(k) \) of particles of mode \(k \) by a black hole in Anti de Sitter background is given by
\[\sigma_{QFT}(k) = \frac{\Gamma_A}{e^{(\beta_{\text{sem } bh\text{AdS}}E(k))} - 1} \]
\[(69) \]

where \(\Gamma_A \) is the black hole greybody factor (absorption cross section), and for the sake of simplicity, only bosonic states have been considered; \(\beta_{\text{sem } bh\text{AdS}} = (k_B T_{\text{sem } bh\text{AdS}})^{-1} \), and \(T_{\text{sem } bh\text{AdS}} \) is the QFT (Hawking) temperature given by Eq. \((67) \). The quantum field emission cross section of particles of mass \(m \) is defined as
\[\sigma_{QFT}(m) = \int_0^\infty \sigma_{QFT}(k) \, d\mu(k) \]
\[(70) \]

where \(d\mu(k) \) is the number of states between \(k \) and \(k + dk \).
\[d\mu(k) = \frac{2V_{D-1}}{(4\pi)^{D/2} \Gamma(D/2)} \, k^{D-2} \, dk \]
\[(71) \]

From Eq. \((70) \) we have
\[\sigma_{QFT}(m) = \frac{V_{D-1} \Gamma_A}{(2\pi)^{D-1}} \left(\frac{mc^2}{\beta_{\text{sem } bh\text{AdS}}} \right)^{D/2} \left(\frac{\hbar c}{D-1} \right) \times \]
\[\sqrt{\frac{2}{\pi}} \sum_{n=1}^{\infty} \frac{1}{n^{D/2}} \left\{ n \beta_{\text{sem } bh\text{AdS}} mc^2 K_{D/2} (n \beta_{\text{sem } bh\text{AdS}} mc^2) + K_{D/2-1} (n \beta_{\text{sem } bh\text{AdS}} mc^2) \right\} \]
\[(72) \]
For large m and the leading order $n = 1$, $(\beta_{\text{sem bhAdS}} mc^2 \gg 1)$, we obtain with the help of Eq. (56)

$$\sigma(m)_{\text{QFT}} \simeq \frac{V_{D-1} \Gamma_A}{(2\pi)^{D-1}} \frac{m^{D-1}}{(\beta_{\text{sem bhAdS}} h^2)^{D-1}} e^{-\beta_{\text{sem bhAdS}} mc^2}$$

(73)

The quantum string emission, σ_{string}, is given by

$$\sigma_{\text{string}} \simeq \int_{m_0}^{\infty} \rho_s(m, H) \sigma_{\text{QFT}}(m) \, d\left(\frac{m}{m_s}\right)$$

(74)

where $\rho_s(m, |\Lambda|)$ is given by Eqs. (27) and (28).

We consider now the quantum emission for the different mass ranges, with respect to the relevant anti de Sitter string mass scale M_s Eq. (17). For low masses $m \ll M_s$, the $\rho_s(m, H)$ leading behavior is given by the flat space solution. From Eqs. (73), (74) and (27) (open strings), the leading contribution to the quantum string emission cross section in any D-dimensions is

$$\sigma_{\text{string}}(m \ll M_s) \sim \frac{V_{D-1} \Gamma_A}{(2\pi)^{D-1}} \frac{m^{D-1}}{(\beta_{\text{sem bhAdS}} h^2)^{D-1}} e^{-\left(\beta_{\text{sem bhAdS}} - \beta_s\right) m_0 c^2}$$

(75)

For $m \ll M_s$, (which is a low regime, $Hm \ll c/\alpha'$) regime, the bhAdS string emission cross section shows the same singular behavior near t_s as the low Hm behavior of the Anti de Sitter partition function Eq. (38), and as the quantum string emission by an asymptotically flat black hole [1], [4], in our case here at the bhAdS temperature $T_{\text{sem bhAdS}}$. This is so, since in the bhAdS background, the string mass scale for low string masses (temperatures) is the Hagedorn flat space string temperature t_s. The limit $T_{\text{sem bhAdS}} \rightarrow t_s$ is a high temperature behavior for low $Hm \ll c/\alpha'$; t_s is larger than $T_{\text{sem bhAdS}}$ and smaller than the Anti de Sitter string temperature T_s.

For low temperatures $\beta_{\text{sem bhAdS}} \gg \beta_s$, (i.e. semiclassical regime), we recover the QFT Hawking emission at the temperature $T_{\text{sem bhAdS}}$:

$$\sigma_{\text{string}}(T_{\text{sem bhAdS}} \ll t_s) \sim \frac{V_{D-1} \Gamma_A}{(2\pi)^{D-1}} \frac{m^{D-3}}{m_s^2} \frac{m^{D-3}}{(\beta_{\text{sem bhAdS}} h^2)^{D-1}} e^{-\beta_{\text{sem bhAdS}} m_0 c^2}$$

(76)

For high masses $m \sim M_s$, and $m >> M_s$, σ_{string} behaves as:
\[\sigma_{\text{string}}(m \sim M_s \text{ and } m \gg M_s) \sim \frac{V_{D-1} \Gamma_A}{(\beta_{\text{sem bhAdS}} \hbar c)^{D-1}} \left(\frac{\beta_s}{\beta_{\text{AdS}}} \right) \frac{3-D}{e^{\beta_{\text{AdS}}}(\beta_s - 2\pi \beta_{\text{sem bhAdS}})} \]

(77)

The evaporation of a black hole in AdS space time, from its early semiclassical or quantum field theory regime (Hawking radiation) towards a quantum string anti de Sitter regime (late stages), can be seen as well from the black hole decay rate. In the early evaporation stages, the semiclassical black hole in anti-de Sitter background decays thermally as a grey body at the Hawking temperature \(T_{\text{sem bhAdS}} \) Eq. (67), with the decay rate

\[
\Gamma_{\text{sem}} = \frac{d \ln M_{\text{sem bhAdS}}}{dt} \sim G (T_{\text{sem bhAdS}})^3, \quad M_{\text{sem bhAdS}} = 2\pi T_{\text{sem bhAdS}}
\]

(78)

\(\hbar = c = k_B = 1 \).

As evaporation proceeds, \(T_{\text{sem bhAdS}} \) increases until it reaches the string anti de Sitter temperature \(T_s \) Eq. (19), the black hole itself becomes an excited string anti de Sitter state, decaying with a string width \(\Gamma_s \sim \alpha' T_s^3 \), \((G \sim \alpha') \), into all kind of particles, with pure (non mixed) quantum radiation. For \(T_{\text{sem bhAdS}} \to T_s \), the semiclassical black hole decay rate \(\Gamma_{\text{sem}} \) becomes precisely the quantum string decay \(\Gamma_s \). The implications of the limit \(T_{\text{sem bhAdS}} = T_s \) are analyzed in the Section below.

VIII. STRING BOUNDS FOR A BLACK HOLE IN ANTI DE SITTER BACKGROUND

Far from the black hole, the black hole-Anti de Sitter (bhAdS) background tends asymptotically to AdS space-time. Black hole evaporation will be measured by an observer which is at this asymptotic region. Asymptotically, in the Schwarzschild black hole-Anti de Sitter space-time, \(\rho_s(m, H) \) is equal to the string mass density of states in AdS space time Eq. (27). Then, for the partition function of a gaz of strings far from the black hole in the bhAdS space-time, we only need to substitute \(\beta_{\text{sem}} \) in Section (V) by \(\beta_{\text{sem bhAdS}} \), i.e., substitute the Anti de Sitter temperature \(T_{\text{sem}} \) Eq. (7) by the black hole temperature in Anti de Sitter space \(T_{\text{sem bhAdS}} \) Eq. (67). With this substitution, all results in Section (V) hold for the bhAdS case as well. Mathematically, there is no strict bound \(T_{\text{sem bhAdS}} < T_s \)
emerging from the string partition function in the bhAdS case, since the bhAdS string partition function is mathematically well defined for all temperature. However, the regime when $T_{sem \ bhAdS}$ reaches the string temperature T_s truly characterizes the string regime of the bhAdS background. From Eqs. (7), (19), (67), (68), the condition

$$T_{sem \ bhAdS} = T_s,$$ \hspace{1cm} (79)

yields:

$$\ell^2_s = L_{c\ell} L_{bhAdS},$$ \hspace{1cm} (80)

which implies the following equation

$$\ell^2_s \left[1 + 2 \left(\frac{r_g}{L_{c\ell}} \right)^2 \right] = 2 r_g L_{c\ell}$$ \hspace{1cm} (81)

Thus, the black hole gravitational radius r_g satisfies

$$\left(\frac{r_g}{L_{c\ell}} \right)^2 - r_g \frac{L_{c\ell}}{\ell^2_s} + \frac{1}{2} = 0$$ \hspace{1cm} (82)

with the solution:

$$r_{g\pm} = \frac{1}{2} L^3_{c\ell} \frac{L_{c\ell}}{\ell^2_s} \left[1 \pm \sqrt{1 - 2 \left(\frac{L_{c\ell}}{\ell^2_s} \right)^4} \right]$$ \hspace{1cm} (83)

Both r_{g+} and r_{g-} are physical roots provided:

$$L_{c\ell} \geq 2^{1/4} \ell_s \equiv L_{c\ell \ min} = 1.189 \ell_s$$ \hspace{1cm} (84)

That is, there is a minimal AdS classical length $L_{c\ell \ min}$, or a maximal AdS string length $L_{s \ max}$:

$$L_s \leq 2^{-1/4} \ell_s \equiv L_{s \ max} = 0.841 \ell_s.$$ \hspace{1cm} (85)

For $L_{c\ell} \gg L_{c\ell \ min}$, r_{g+} and r_{g-} are:

$$r_{g+} = \frac{1}{2} L^3_{c\ell} \frac{L_{c\ell}}{\ell^2_s} \left[1 - \frac{1}{2} \left(\frac{L_{c\ell}}{\ell_s} \right)^4 + O \left(\frac{L_{c\ell}}{\ell_s} \right)^8 \right]$$ \hspace{1cm} (86)

$$r_{g-} = \frac{1}{2} \frac{L^2_{c\ell}}{L_{c\ell}} \left[1 - O \left(\frac{L_{c\ell}}{\ell_s} \right)^2 \right],$$ \hspace{1cm} (87)

which in terms of L_s read:

$$r_{g+} \approx \frac{L^2_{c\ell}}{L_s} = \frac{c^4}{h \alpha' H^3}, \quad r_{g-} \approx \frac{1}{2} L_s = \frac{h \alpha' H}{2c^2}, \quad \text{i.e.} \quad r_{g+} r_{g-} = \frac{L^2_{c\ell}}{2}$$ \hspace{1cm} (88)
On the other hand, for $L_{\ell} = L_{\ell \min} = 2^{1/4} \, \ell_s$, (or $L_s = L_{s \max} = 2^{-1/4} \, \ell_s$), $r_g \pm$ are:

$$
\begin{align*}
 r_{g+} &= r_{g-} = \frac{L_{\ell \min}}{\sqrt{2}} = L_{s \max} = \frac{\ell_s}{2^{1/4}} = 0.841 \, \ell_s
\end{align*}
$$

Eq. (83) shows the relation between the Schwarzschild radius and the cosmological constant Eq. (5) when $T_{sem \, bhAdS} = T_s$ (bhAdS string regime). We see that a black hole in Anti de Sitter space allows an intermediate string regime, not present in the Schwarzschild black hole alone ($H = 0$), since in the bhAdS background there are two characteristic string scales: L_s and ℓ_s. In an asymptotically flat space-time, the black hole radius becomes ℓ_s in the string regime. In an asymptotically Anti de Sitter space, when $T_{sem \, bhAdS}$ reaches T_s, the black hole radius r_g becomes either r_{g+} or r_{g-}, depending on the Anti de Sitter string size L_s. Then, when the AdS characteristic length L_{ℓ} reaches its minimal value, r_g becomes uniquely determined by ℓ_s, as given by Eq. (89). The bhAdS string regime determines a maximal value for H: $H_{\max} = 0.841 \, c/\ell_s$

The bhAdS string regime is larger than black hole de Sitter (bhdS) string regime. Notice the differences between the bhAdS and bhdS string regimes:

(i) only one root (r_{g-}) is present in the bhdS string regime.

(ii) there is no condition such as Eq. (84) or (85) for L_{ℓ} or L_s in the bhdS string regime.

(iii) In the bhdS space, when $T_{sem \, bhAdS}$ reaches T_s, the black hole radius r_g becomes L_s. Then, when $L_{\ell} = \ell_s$, r_g is minimal and determined by ℓ_s too, ($r_{g \min} = 0.365 \, \ell_s$).

In contrast, in the bhAdS background, L_{ℓ} can not reach ℓ_s, $L_{\ell \min}$ is larger than ℓ_s, Eq. (83). The minimal black hole radius in AdS space-time, $r_{g \min} = 0.841 \, \ell_s$, is larger than the minimal black hole radius in de Sitter space:

$$
\begin{align*}
 r_{g \min \, bhAdS} &= 2.304 \, r_{g \min \, bhAdS}
\end{align*}
$$

IX. SEMICLASSICAL (Q.F.T) AND QUANTUM (STRING) ANTI DE SITTER REGIMES

We have shown that for $m \rightarrow M_s$, i.e. $T \rightarrow T_s$. From the string canonical partition function Sec. (V) in AdS space time, the microscopic string density of mass states $\rho_s(m, H)$ Secs. (III) and (IV), the quantum string emission by a black hole in AdS space time
Sec. (VII) and the bhAdS string bounds Sec. (VIII), we have shown that, for $T_{\text{sem}} \rightarrow T_s$, the semiclassical (Q.F.T) regime becomes a string regime at the string Anti de Sitter temperature T_s Eq. (13). This means that, in the quantum string regime, L_{cl} becomes L_s, T_{sem} becomes T_s, the semiclassical density of states ρ_{sem} and semiclassical entropy S_{sem} become the string density of states ρ_s and entropy S_s. Namely, a semiclassical Anti de Sitter state, $(AdS)_{\text{sem}} = (L_{cl}, M_{cl}, T_{\text{sem}}, \rho_{\text{sem}}, S_{\text{sem}})$, becomes a quantum string state $(AdS)_s = (L_s, m, T_s, \rho_s, S_s)$.

The sets $(AdS)_s$ and $(AdS)_{\text{sem}}$ are the same quantities but in different (quantum and semiclassical) regimes. This is the usual classical/quantum duality but in the gravity domain, which is universal, not linked to any symmetry or isommetry nor to the number or the kind of dimensions. From the semiclassical and quantum Anti de Sitter regimes $(AdS)_{\text{sem}}$ and $(AdS)_s$, we can write the full Anti de Sitter entropy $S_{\text{sem}}(H)$, with quantum corrections included, such that it becomes the Anti de Sitter string entropy $S_s(m, H)$ Eq. (43) in the string regime. Therefore, the full Anti de Sitter entropy $S_{\text{sem}}(H)$ is given by

$$S_{\text{sem}}(H) = \hat{S}_{\text{sem}}^{(0)}(H) - a k_B \ln \left(\frac{\hat{S}_{\text{sem}}^{(0)}(H)}{k_B} \right) - k_B \ln F(H)$$

(91)

where

$$\hat{S}_{\text{sem}}^{(0)}(H) \equiv S_{\text{sem}}^{(0)}(H) \sqrt{f(X)} , \quad F(H) \equiv \sqrt{(1 + 4X^2)f(X)}$$

(92)

$$a = D , \quad f(X) = \frac{2}{1 + \Delta} , \quad \Delta \equiv \sqrt{1 + 4X^2} = \sqrt{1 + \left(\frac{\pi k_B}{S_{\text{sem}}^{(0)}(H)} \right)^2}$$

(93)

$$2X(H) \equiv \frac{\pi k_B}{S_{\text{sem}}^{(0)}(H)} = \frac{M_{\text{sem}}}{M_{cl}} = \left(\frac{m_{Pl}}{M_{cl}} \right)^2$$

(94)

$S_{\text{sem}}^{(0)}(H)$ is the Bekenstein-Hawking entropy for AdS space time Eq. (9). M_{cl} is the Anti de Sitter mass scale Eq. (12), M_{sem} is the semiclassical mass Eq. (8). In terms of $S_{\text{sem}}^{(0)}(H)$, $S_{\text{sem}}(m, H)$ Eq. (31) reads:

$$S_{\text{sem}}(H) = \sqrt{f(X)} S_{\text{sem}}^{(0)}(H) - a k_B \ln \left(\sqrt{f(X)} \frac{S_{\text{sem}}^{(0)}(H)}{k_B} \right) - k_B \ln \sqrt{f(X)} - k_B \ln \sqrt{1 + 4X^2}$$

(95)

Δ Eq. (93) with $X(H)$ Eq. (94) describes $S_{\text{sem}}(H)$ in the mass domain $0 \leq M_{cl} \leq \infty$, that is, $0 \leq X \leq \infty$, $1 \leq \Delta \leq \infty$, $0 \leq f(X) \leq 1$.

23
Eq. (91) provides the whole Anti de Sitter entropy $S_{sem}(H)$ as a function of the Bekenstein-Hawking entropy $S_{sem}^{(0)}(H)$. The limit $X \to 0$ means $M_{cl} \gg m_{Pl}$, that is $L_{cl} \gg \ell_{Pl}$, (low $H \ll c/\ell_{Pl}$ or low curvature regime). In this classical limit: $\Delta \to 1$, $f(X) \to 1$ and $S_{sem}^{(0)}(H)$ is the leading term of $S_{sem}(H)$, with its logarithmic correction:

$$S_{sem}(H) = S_{sem}^{(0)}(H) - a k_B \ln \left(\frac{S_{sem}^{(0)}(H)}{k_B} \right)$$ \hspace{1cm} (96)$$

The classical AdS regime is like the de Sitter or the Schwarzschild black hole classical regime ($M_{cl} \gg m_{Pl}$): in this regime, the leading term to the entropy is the Bekenstein-Hawking entropy.

But for high Hubble constant, $H \sim c/\ell_{Pl}$, (i.e. $M_{cl} \sim m_{Pl}$), the high curvature or quantum AdS regime is very different from the high curvature or quantum de Sitter regime, as we precisely see below.

X. ABSENCE OF ANTI DE SITTER GRAVITATIONAL PHASE TRANSITION

In terms of the mass, or temperature, the variable Δ reads:

$$\Delta = \sqrt{1 + \left(\frac{m_{Pl}}{M_{cl}} \right)^4} = \sqrt{1 + \left(\frac{T_{sem}}{T} \right)^2},$$ \hspace{1cm} (97)$$

where

$$T = \frac{1}{2\pi k_B} M_{cl} c^2$$ \hspace{1cm} (98)$$

and T_{sem} is the semiclassical Anti de Sitter temperature Eq. (11) or Eq. (12).

It must be noticed that Δ never vanishes in AdS space-time, contrary to de Sitter space-time in which $\Delta \to 0$ for $M_{cl} \to M_{sem}$, that is for $M_{cl} \to m_{Pl}$.

For $M_{cl} \to m_{Pl}$, the Bekenstein-Hawking AdS entropy is: $S_{sem}^{(0)}(H)(M_{cl} = m_{Pl}) = \pi k_B$, and the full AdS entropy $S_{sem}(H)$ Eq. (91) is:

$$S_{sem}(H) = \sqrt{\frac{2}{1 + \sqrt{2}}} \pi k_B - a k_B \ln \left(\frac{2}{1 + \sqrt{2}} \frac{\pi}{\sqrt{1 + \sqrt{2}}} \right) - k_B \ln \left(\frac{2}{\sqrt{1 + \sqrt{2}}} \right)$$ \hspace{1cm} (99)$$

Contrary to de Sitter space, no phase transition occurs at $T \to T_{sem}$ in de Anti de Sitter space. That is, there is no phase transition at $M_{cl} \to m_{Pl}$, i.e. $T \to t_{Pl}$, (high curvature $H \to c/\ell_{Pl}$ or quantum AdS regime). This is so, since for AdS background, like for the AdS
string entropy, no singularity at finite mass or finite temperature occurs in the density of states or entropy. Also contrary to de Sitter space, and to the rotating black hole (extremal transition), there is not a square root branch point in the mass (temperature) analogous to the thermal self-gravitating gas phase transition of point particles [15].

It must be noticed that in AdS background we can still analyze the mass regime $M_{cl} \ll m_{Pl}$, for which $X \gg 1$, $\Delta = 2X \gg 1$ and $f(X) = 1/X \to 0$. In this regime, the Bekenstein-Hawking term is subdominant:

$$S_{sem}^{(0)}(H)(X \gg 1) = \frac{\pi k_B}{2X} << 1,$$

(100)

therefore, $\sqrt{f(X)}S_{sem}^{(0)} = \pi k_B/(2X^{3/2})$, and the full AdS entropy $S_{sem}(H)$ Eq. (91) behaves as :

$$S_{sem}(H)(X \gg 1) = ak_B \ln \left(\frac{2}{\pi} X^{3/2}\right) - k_B \ln \left(2X^{1/2}\right) + \frac{\pi k_B}{2X^{3/2}}$$

(101)

This is a high curvature quantum regime, in which $H \gg c/\ell_{Pl}$, and therefore, the entropy is not dominated by the usual Bekenstein-Hawking (zero order term), which results negligible in this case. The Planck scale AdS curvature regime ($H \sim c/\ell_{Pl}$, is reached smoothly, without any any singular behavior or phase transition in the entropy. The very high curvature AdS regime $H \gg c/\ell_{Pl}$, is reached with a logarithmic growing behavior of the entropy.

Acknowledgments

A. B. acknowledges the Observatoire de Paris, LERMA, for the kind hospitality extended to him. M. R. M. acknowledges the Spanish Ministry of Education and Science (FPA 2004-2602 project) for financial support, and the Observatoire de Paris, LERMA, for the kind hospitality extended to her.