I. INTRODUCTION

The concept of quantum walks (QW) has been introduced (see Ref. 1) in order to explore how the intrinsically statistical character of quantum mechanics affects statistical properties of quantum analogues of classical random walks. In particular, an example of a random process is a Markov chain such that the position value \(x \in X \) is iteratively updated, given by the transition probability \(P(x|y) \).

Quantum walks have been studied in connection with novel quantum algorithms: The instances thereof were provided in Ref. 2 (the quantum walk algorithm on the hypercube with complexity \(O(\sqrt{n}) \)) and in Ref. 3 (the quantum walk algorithm for subset finding). The former uses the quantum walk on bipartite graphs, while the latter uses the quantum walk on bipartite graphs. Quantum walks on bipartite graphs were analyzed in Ref. 4.

Various aspects of QWs have been studied in detail recently (for a review on QWs see Ref. 5). In particular, Aharonov et al. have presented an analytic description of discrete quantum walks on Cayley graphs 6. A special case of a Cayley graph, the line, was asymptotically analyzed in Ref. 7. It has been shown that, unlike classical random walks, the probability distribution induced by quantum walks is not Gaussian (with a peak around the origin of the walk), but has two peaks at positions \(\pm \frac{\sqrt{n}}{2} \), where \(n \) is the number of steps. As a result the dispersion of probability distribution for quantum walks grows quadratically, compared to linear growth for classical random walks. The role of decoherence in quantum walks has been analyzed by Kendon et al. Ref. 8,9.

Quantum walks are intrinsically deterministic processes (in the same sense as the Schrödinger equation is a deterministic equation). Their "classical randomness" only emerges when the process is monitored (measured) in one way or another. Via the measurement, one can regain a classical behavior for the process. For instance, by measuring the quantum coin, the quadratic dispersion of the probability distribution reverts to a classical, linear dispersion. If the quantum coin is measured at every step, then the record of the measurement outcomes singles out a particular classical path. By averaging over all possible measurement outcomes, one once again recovers the classical result.

We investigate quantum walks in multiple dimensions with different quantum coins. We augment the model by assuming that at each step the amplitudes of the coin state are multiplied by random phases. This model enables us to study in detail the role of decoherence in quantum walks and to investigate the quantum-to-classical transition. We also provide classical analogues of the quantum random walks studied. Interestingly enough, it turns out that the classical counterparts of some quantum random walks are classical random walks with a memory and biased coin. In addition random phase shifts "simplify" the dynamics (the cross interference terms of different paths vanish on average) and enable us to give a compact formula for the dispersion of such walks.

PACS numbers: 03.67.-a, 05.40.Fb
(i.e., $\sigma = 0$) we recover the QW, while for large σ, we obtain a uniform distribution on the interval $[-\pi, \pi]$ and the CRW is recovered. In between we can observe a continuous quantum-to-classical transition of quantum walks. In Sec. IV we present our conclusions. Some technical details of the calculations can be found in Appendix A.

II. QW IN MULTIPLE DIMENSIONS

Let us first define a quantum walk in d dimensions – i.e., on the lattice \mathbb{Z}^d. The quantum walk is generated by a unitary operator repeatedly applied on a vector from a Hilbert space $\mathcal{H} \equiv \mathcal{H}_X \otimes \mathcal{H}_D$. The Hilbert space $\mathcal{H}_X \equiv \text{span}\{|x|: x \in \mathbb{Z}^d\}$ is called the position Hilbert space. For $\forall x, y \in \mathbb{Z}^d$ we define the usual scalar product $x \cdot y \equiv \sum_{j=1}^{d} x_j y_j$ and the norm $|x| = \sqrt{x \cdot x}$. In the following, the distance between the vertices is a dimensionless quantity, with the distance between adjacent vertices equal to 1.

There are $2d$ vectors $e_a \in \mathbb{Z}^d$ such that $|e_a| = 1$. The space $\mathcal{H}_D \equiv \text{span}\{|a|: a = 1, \ldots, 2d\}$ is spanned by states isomorphic to e_a. \mathcal{H}_D is called the direction Hilbert space. In the following we set $D = \{1, \ldots, 2d\}$.

A single step of quantum walk is generated by the unitary operator U such that $U = S(1 \otimes C)$, where

$$S = \sum_{x \in \mathbb{Z}^d} \sum_{a \in D} |x + e_a\rangle \langle x| \otimes |a\rangle \langle a| = \sum_{a \in D} T_a \otimes P_a ; \tag{2.1}$$

$P_a \equiv |a\rangle \langle a|$ and C is any unitary operator. The operator S changes the state of the position register in the direction a, while the coin operator C operates on the direction register. For simplicity we consider the permutation symmetric coin

$$C = \begin{bmatrix}
 r & t & t & \cdots \\
 t & r & t & \cdots \\
 \vdots & \vdots & \ddots & \cdots \\
 t & \cdots & t & r
\end{bmatrix}. \tag{2.2}$$

The quantum walk is generated by a sequence $U^n|\psi_0\rangle$, where $|\psi_0\rangle$ is some initial state. For simplicity, we assume

$$|\psi_0\rangle = |0\rangle \otimes |s\rangle , \tag{2.3}$$

where $|s\rangle \equiv \frac{1}{\sqrt{|D|}} \sum_{a \in D} |a\rangle$. We also assume the so-called Grover coin $[12]$, which is a specific instance of the permutation symmetric coin in Eq. (2.2), described by the operator

$$C_G = 2|s\rangle \langle s| - 1. \tag{2.4}$$

In order to find the eigensystem of U, we switch to the translationally symmetric basis $[4]$. We set

$$|\tilde{\psi}_k\rangle = \sum_{x \in \mathbb{Z}^d} e^{ik \cdot x} |x\rangle , \tag{2.5}$$

where $k \in \mathbb{R}^d$. By virtue of the inverse Fourier transform we obtain

$$|x\rangle = \frac{1}{(2\pi)^d} \int_{-\pi}^{\pi} e^{-ik \cdot x} |\tilde{\psi}_k\rangle d^d k , \tag{2.6}$$

with $|\tilde{\psi}_k\rangle$ are eigenvectors of the translation operator in the a-th direction, i.e.

$$T_a |\tilde{\psi}_k\rangle = e^{-ik \cdot e_a} |\tilde{\psi}_k\rangle , \tag{2.7}$$

where $T_a = \sum_{x \in \mathbb{Z}^d} |x + e_a\rangle \langle x|$. By applying the evolution operator, we obtain

$$U|\tilde{\psi}_k\rangle \otimes |\chi\rangle = S|\tilde{\psi}_k\rangle \otimes C|\chi\rangle = \sum_{a \in D} e^{-ik \cdot e_a} |\tilde{\psi}_k\rangle \otimes |a\rangle \langle a| C|\chi\rangle \tag{2.8}$$

and

$$\Lambda_k = \sum_{a \in D} e^{-ik \cdot e_a} |a\rangle \langle a| . \tag{2.9}$$

In order to simplify the notation in what follows we will denote projectors $|a\rangle \langle a|$ as P_a. To find the eigensystem of U, we need to find the eigensystem of $\Lambda_k C$. Equivalently, we need to evaluate $(\Lambda_k C)^n|\chi\rangle$.

We first use the Grover matrix C_G in Eq. (2.4). In order to find the power of the matrix $(\Lambda_k C_G)^n$ we prove the following lemma:

Lemma 1. Let $D = \{|a\rangle\}$ be the orthonormal basis of a Hilbert space and $C_G = 2P_s - 1$, where $|s\rangle = \frac{1}{\sqrt{|D|}} \sum_{a \in D} |a\rangle$. Then

$$(P_s C_G^n) = p_n |s\rangle \langle s| + q_n P_a ,$$

with $p_n = \frac{2}{\sqrt{|D|}} \left(\frac{2}{|D|} - 1 \right)^{n-1}$ and $q_n = - \left(\frac{2}{|D|} - 1 \right)^{n-1}$.\hfill \Box

Proof. We denote $P_s C_G = \frac{2}{\sqrt{|D|}} |a\rangle \langle a| - P_a = p_0 |a\rangle \langle a| + q_0 P_a$. Setting $(P_s C_G)^k = p_k |a\rangle \langle a| + q_k P_a$ we get that $p_{k+1} = p_k \left(\frac{2}{|D|} - 1 \right)$ and $q_{k+1} = q_k \left(\frac{2}{|D|} - 1 \right)$. By induction we immediately obtain the result.\hfill \square

From Eq. (2.4) we see that with the Grover coin

$$(\Lambda_k C_G)^n = \left(\sum_{a \in D} e^{-ik \cdot e_a} P_a C_G \right)^n = \sum_{(a_1, \ldots, a_n) \in D^n} e^{-ik \cdot (e_{a_1} + \cdots + e_{a_n})} P_{a_1} C_G \cdots P_{a_n} C_G . \tag{2.10}$$

By induction, the expression $P_{a_1} C_G \cdots P_{a_n} C_G$ from Eq. (2.10) can be rewritten as
Lemma 2.

\[P_{a_1} C_G \cdots P_{a_n} C_G = \frac{(-1)^n}{|D|^{(2n-1)/2}} \times \prod_{j=1}^{n-1} \left(|D|\delta_{a_j,a_{j+1}} - 2\sqrt{|D|} \langle a_1 \rangle - 2\langle a_1 \rangle \langle s \rangle \right). \]

(2.11)

The product in Eq. (2.11) is taken to be 1 for \(n \) the summands for which all elements distinct, contribute to the total sum. As a consequence, a linear combination of in the product in Eq. (2.12) can be expressed as the \langle \rangle Grover matrix is zero. From now on we will consider the r this case is special in that the coefficient \(a \) in Eq. (2.10), the last line can be rewritten as \[P_{a_1} C_G \cdots P_{a_n} C_G = \prod_{(a^{(1)}, \ldots, a^{(k)}) \in D^k} \left(P_{a^{(1)}} C_G \right)^{m_1} \cdots \left(P_{a^{(k)}} C_G \right)^{m_k}, \]

where \(a^{(j)} \in D \). According to Lemma 1 all the terms in the product in Eq. (2.12) can be expressed as the linear combination of \(|a^{(j)}\rangle \langle s|, P_{a^{(j)}} \). Since for \(j \neq j' \Rightarrow \langle a^{(j)}|a^{(j')} \rangle = 0 \), we get the result

\[(\Lambda_k C_G)^n = \sum_{\text{partition}} e^{-ik\langle \varepsilon_{a^{(1)}} + \cdots + \varepsilon_{a^{(k)}} \rangle} \times \left(S(m_1, \ldots, m_k)\langle a_1 \rangle + T(m_1, \ldots, m_k) P_{a_n} \right). \]

(2.13)

The expressions for \(S \) and \(T \) are given by relations

\[S(m_1, \ldots, m_k) = p_{m_1} \cdots p_{m_k}; \quad T(m_1, \ldots, m_k) = p_{m_1} \cdots p_{m_{k-1}}, q_{m_k}, \]

(2.14) (2.15)

where we use the notation of Lemma 1. The coefficients \(m_1, \ldots, m_k \) give the partitioning of the integer \(n \) such that \(m_1 + \cdots + m_k = n \). The “partition” in Eq. (2.13) means the summation over all such partitions.

Starting with the initial state \(|\psi_0 \rangle = |0 \rangle \otimes |s \rangle \) and using the expression (2.11), we obtain

\[(\Lambda_k C_G)^n|s \rangle = \sum_{(a_1, \ldots, a_n) \in D^n} e^{-ik\langle a_1, \ldots, a_n \rangle} \frac{(-1)^{n+1}}{|D|^{(2n-1)/2}} \times \prod_{j=1}^{n-1} \left(|D|\delta_{a_j,a_{j+1}} - 2\right) |a_1 \rangle. \]

(2.16)

This equation takes the singular form for \(|D| = 2 \) (i.e., for one-dimensional quantum walk on line) such that only the summands for which all elements \(\{a_1, \ldots, a_n \} \) are distinct, contribute to the total sum. As a consequence, the sum in Eq. (2.16) when \(|D| = 2 \) is zero for \(n > 2 \). But this case is special in that the coefficient \(r \) of the Grover matrix is zero. From now on we will consider the dimension of the lattice to be equal or larger than 2, so that, \(|D| \geq 4 \).

The expression (2.16) is symmetric with respect to the permutation of elements, i.e., \(|\langle a_j |(\Lambda_k C_G)^n|s \rangle \rangle \) has the same value for any \(a_j \in D, n \in \mathbb{Z} \). A value of the right-hand side of Eq. (2.16) depends on the term

\[\Xi_0(a_1, \ldots, a_n) = \prod_{j=1}^{n-1} \left(|D|\delta_{a_j,a_{j+1}} - 2\right). \]

(2.17)

Obviously, \(|\Xi_0(a_1, \ldots, a_n) \rangle \) is maximal for \(a_1 = \cdots = a_n \). More precisely, if \(a_j = a_{j+1} \) for \(j = 0, \ldots, n-1 \) in Eq. (2.17), then

\[|\Xi_0(a_1, \ldots, a_n) \rangle = O \left((|D| - 2)^{k} 2^{-n-k} \right), \]

(2.18)

and there are \(O(|\mathcal{D}|^{n}) \) such terms in the sum of Eq. (2.16). Now Eq. (2.16) takes the form

\[(\Lambda_k C_G)^n|s \rangle = \sum_{(a_1, \ldots, a_n) \in D^n} e^{-ik\langle a_1, \ldots, a_n \rangle} \Xi_0(a_1, \ldots, a_n)|a_1 \rangle. \]

(2.19)

In what follows we will compare the quantum walk described by Eq. (2.3) with the quantum walk with random phase shifts.

III. QW WITH RANDOM PHASE SHIFTS

A. Analytic Results

Quantum walks differ from classical random walks (CRW) in many respects. One of the main differences is that dispersions of probability distributions of CRW grow linearly with the number of steps while for QW the dispersions grow quadratically [7]. In what follows we will show that introducing random phase shifts (RPS) at each step of the evolution causes the QW to behave more like a classical random walk. The reduction of the QW to the CRW has been discussed in Refs. [10, 11]. The authors of these papers have discussed two possible routes to classical behavior for the discrete QW on a line. First, the QW-to-CRW transition has been considered as a result of decoherence in the quantum “coin” which drives the walk. Second, higher-dimensional coins have been used to “dilute” the effects of quantum interference. The position variance has been used as an indicator of classical behavior. It has been shown that the multi-coin walk retains the “quantum” quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits “classical” linear growth of the variance even for weak decoherence.

In what follows we will utilize a different approach to analyze the QW-to-CRW transition. In Ref. [11] the authors used a CP-map on the coin degree of freedom to simulate the effects of decoherence on the quantum walks in 1 dimension. If the CP map is pure dephasing, then
the dispersion of the probability distribution is asymptotically linear. Our approach is new in two respects: Firstly, we generalize the problem to an arbitrary number of dimensions; secondly we apply a different map, a sequence of random phase shifts on the coin. We assume that at each step a random phase shift $(\theta_i^{(a)})$ described by a unitary operator

$$R(\theta^{(n)}) = \sum_{a \in D} e^{i\theta^{(n)}_a} P_a$$

(3.1)

on the direction register is applied to a particle. This procedure, in effect, is equivalent to an application of another (random) coin on the whole direction register. Each random sequence $\Sigma \equiv \{R(\theta^{(n)})\}_{n=1}^{\infty}$ generates a different quantum walk

$$U(\theta^{(1)}) \cdots U(\theta^{(n)}) = \prod_{m=1}^{n} S \cdot \left(1 \otimes R(\theta^{(j)})C\right).$$

(3.2)

As we shall see later on, particular random walk probability distributions associated with different sequences of random phase shifts do not differ significantly.

What is significant on the QW-RPS is that it has mixing properties similar to the classical random walk (the linear growth of variance) and in particular for dimension $= 2$, the mean probability distribution is exactly the same as for the classical random walk. Before we prove both statements, we derive the formula for the dispersion of the probability distribution for QW-RPS, using a generalized Grover coin (i.e. permutation symmetric coin).

The generalized Grover coin is (cf. Eq. (2.2))

$$G_{r,t} = r \sum_{a \in D} P_a + t \sum_{a,b \in D, a \neq b} |a\rangle \langle b| = (r-t)I + t|D||P_a.$$

(3.3)

where $P_a = |a\rangle \langle a|$. This operator is unitary if the following relations hold:

$$|r|^2 + (|D| - 1)|t|^2 = 1;$$

(3.4)

$$(|D| - 2)|t|^2 + r^*t + rt^* = 0.$$

(3.5)

The QW-RPS may be thought of as a sequence of random operators $U(\theta)$ such that

$$U_{r,t}(\theta) = \left[\sum_{a \in D} T_a \otimes P_a\right] \cdot (1 \otimes \hat{C}(\theta)),$$

(3.6)

and

$$\hat{C}(\theta) = 1 \otimes \sum_{a \in D} e^{i\theta_a} P_a G_{r,t}.$$

(3.7)

Here $\theta = (\theta_1, \ldots, \theta_{|D|})$ is a sequence of independent random real variables. Hence we actually get a sequence of random operators $\{U(\theta^{(j)})\}$ which creates the QW-RPS.

One step of a QW-RPS is given by:

$$U_{r,t}(\theta^{(1)}) = S \cdot \hat{C}(\theta^{(1)}) = \left(\sum_{a \in D} T_a \otimes |a\rangle \langle a|\right)$$

$$\times \left[1 \otimes \sum_{a \in D} e^{i\theta_a(t \sqrt{|D|}|a\rangle \langle s| + (r-t)P_a)\right]$$

$$= \sum_{a \in D} T_a \otimes e^{i\theta_a} \left(t \sqrt{|D|}|a\rangle \langle s| + (r-t)P_a\right).$$

(3.8)

For the chain of n evolution operators of QW-RPS we obtain

Lemma 3. Let $\{U_{r,t}(\theta^{(j)})\}_{n=1}^{\infty}$ be a sequence of random operators according to Eq. (3.6). Then

$$U_{r,t}(\theta^{(1)}) \cdots U_{r,t}(\theta^{(n)}) = \sum_{a_1, \ldots, a_n \in D} T_{a_1 \cdots a_n}$$

$$\otimes e^{i(\theta^{(1)}_1 + \cdots + \theta^{(n)}_n)} \left[(r-t)|a_1\rangle \langle a_n| + t \sqrt{|D|}|a_1\rangle \langle s|\right]$$

(3.9)

$$\times \Xi(a_1, \ldots, a_n) |a_1\rangle,$$

where

$$\Xi(a_1, \ldots, a_n) = \prod_{j=1}^{n-1} \left[t + (r-t)\delta_{a_j, a_{j+1}}\right].$$

(3.10)

Proof. By induction.

It can be analyzed how a specific QW-RPS evolves given a specific initial state $|\psi_0\rangle = |0\rangle \otimes |s\rangle$.

Lemma 4. Let $\{U(\theta^{(j)})\}_{j=1}^{\infty}$ be a sequence of random operators according to Eq. (5.6). Then

$$|\psi(\Theta, n)\rangle \equiv U(\theta^{(1)}) \cdots U(\theta^{(n)})|0\rangle \otimes |s\rangle =$$

$$= \sum_{a_1, \ldots, a_n \in D} |0 + e_{a_1} + \cdots + e_{a_n}\rangle$$

$$\otimes e^{i(\theta^{(1)}_1 + \cdots + \theta^{(n)}_n)} \Xi(a_1, \ldots, a_n) \left[\frac{r-t}{\sqrt{|D|}} + \sqrt{|D|}|t|\right] |a_1\rangle.$$

(3.11)

Proof. From Lemma 3.

The probability distribution of $|\psi(\Theta, x, n)\rangle$ shall be derived by projecting it onto $P_x \otimes 1$ and tracing over the coin Hilbert space. Hence by setting

$$a \equiv (a_1, \ldots, a_n)$$

(3.12)

$$a' \equiv (a'_1, \ldots, a'_n)$$

(3.13)

$$\theta(a) \equiv (\theta_{a_1} + \cdots + \theta_{a_n})$$

(3.14)

we get

$$P(\Theta, x, n) = \|(P_x \otimes 1)|\psi(\Theta, n)|\|^2 = \left|\frac{r-t}{\sqrt{|D|}} + \sqrt{|D|}|t|\right|^2 \times$$

$$\times \sum_{a, a' \in D^n, a \equiv x \equiv a'} e^{i(\theta(a) - \theta(a'))} \Xi(a) \Xi(a')^* |a_1| \langle a'_1|.$$

(3.15)
where $\theta(a)$ is the sum of the sequence of independent random variables for each a and Ξ is the same as in Eq. (2.17). The symbol $a \equiv x$ means that $0 + \sum_{j=1}^{\infty} e_{a_j} = x$.

It is clear that $P(\Theta, x, n) = P(\Theta, x, n)^*$ since we are summing over all tuples a, a'.

Eq. (3.15) depends on Θ, which is an event generating $n|D|$ random variables $\{a_{j} : j = 1, \ldots, n, \ a \in a\}$. We can split Eq. (3.15) into two parts:

$$P(\Theta, x, n) = \frac{r - t}{\sqrt{|D|}} + \sqrt{|D|} t \left\{ \sum_{a \in D^n} |\Xi(a)|^2 + \sum_{a \equiv x \equiv x} e^{i(\theta(a) - \theta(a'))} \Xi(a) \Xi(a')^* \right\}$$

To obtain the mean probability distribution, we integrate over the random variable θ, assuming uniform distribution for all phases of θ:

$$\langle P(\Theta, x, n) \rangle = \frac{1}{4^n} \sum_{a \in D^n} 1$$

The sum over all paths in Eq. (3.15) is the same as the sum of all classical paths. The constant is the product of the probability to take any individual direction at each step. Hence the mean probability distribution of QW-RPS for dimension 2 is the same as the CRW in 2 dimensions. We easily show that the probability distribution resulting from Eq. (3.15) is normalized:

$$\sum_{x \in Z^2} \langle P(\Theta, x, n) \rangle = \frac{1}{4^n} \sum_{a \in D^n} 1 = 1$$

This equation is one of the main results of our paper, as it shows that the probability distribution of a QW-RPS corresponds to a classical sum over paths.

In order to study specific properties of the mean probability distribution let us consider its dispersion that is defined as

$$D(D, n) = \sum_{x \in Z^2} \langle P(\Theta, x, n) \rangle |x|^2$$

The dispersion corresponding to the mean probability distribution is evaluated in Appendix A [see Eq. (A15)] from which we can derive the following theorem:

Theorem 5. The dispersion of QW-RPS with a generalized Grover coin with coefficients r, t for $n > 2$ is

$$D(D, n) = \frac{1 + |r|^2 - |t|^2}{1 - |r|^2 + |t|^2} (n - 2) + O\left(\left(|r|^2 - |t|^2\right)n\right)$$

We want to find the coefficients r, t such that the above equation is identical to the probability distribution of a CRW. The sufficient condition is that all the terms in Ξ have the same absolute values. It is obvious that this is equivalent with the following requirement

Theorem 6. The dispersion of QW-RPS with Grover coin $G_{r,t}$ is identical to that of a CRW if and only if $|r| = |t|$.

Comparing this requirement with Eqs. (3.4) and (3.5) it follows that the condition $|r| = |t|$ is satisfied only in two cases:

- dimension $= 1$, $r = \frac{1}{\sqrt{2}} e^{i\alpha}$, $t = \frac{1}{\sqrt{2}} e^{i\beta}$, $\alpha - \beta = \frac{\pi}{2} + 2k\pi$
- dimension $= 2$, $r = \frac{1}{2} e^{i\alpha}$, $t = \frac{1}{2} e^{i\beta}$, $\alpha - \beta = \pi + 2k\pi$

The average probability distribution of QW-RPS with generalized Grover coefficients r, t is actually identical to the probability distribution of a CRW with memory (CRW-M). We define a CRW-M as the random walk of a particle on a d-dimensional lattice, whose direction is changed at each step, depending on the direction from which it came. The CRW-M is given by the sequence $\{x_n, a_n\}_{n=1}^{\infty}$, where $x_n \in Z^d$ is the position of the particle, $e_{a_n} \equiv x_n - x_{n-1}$ is the unit vector in any of the 2d directions, and a_0 is preset. One step of the CRW-M is given by the transformation $(x_n, a_n) \rightarrow (x_{n+1}, a_{n+1})$ such that $x_{n+1} - x_n = e_{a_{n+1}}$, where

$$\text{Prob}(a_{n+1} | a_n) = \begin{cases} |r|^2 & a_{n+1} = a_n \\ |t|^2 & \text{otherwise} \end{cases}$$

Beginning with $x_0 = 0$ and a_0 in the uniform mixture of $|D| = 2d$ directions, the probability Prob$(x_n = y)$ is given by the sum of all paths from 0 to y, each weighted by the product of terms $|r|^2, |t|^2$, depending on whether
the path continues in the same direction for two consecutive steps. The sum of the amplitudes is the same as in Eq. (3.20), weighted by the factor \(\frac{|r|}{|D|} = \frac{1}{|D|} \), which corresponds to the mixture of different values of the initial direction of the walker \(a_0 \) (see Eqs. (3.34), (3.38)).

The memory effect in the QW-RPS with Grover coin is due to different absolute values of the coefficients \(r \), \(t \). Although Eq. (3.21) shows that a QW-RPS using a symmetric coin yields a probability distribution which corresponds to a CRW with memory (QRW-M), it is also interesting to consider what QW-RPSs correspond to CRWs with no memory. Using the Fourier coin instead, and using random phase shifts will give the mean probability distribution equivalent to a CRW.

The Fourier coin is defined by the operator of a \(d \)-dimensional Fourier transform

\[
F_d = \frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \sum_{k=0}^{d-1} e^{2\pi i jk/d} |j\rangle \langle k| \quad (3.24)
\]

One step of \(d \)-dimensional QW-RPS with Fourier coin is defined by unitary operator

\[
U_F(\theta) = \left[\sum_{a \in D} T_a \otimes P_a \right] \cdot (1 \otimes \tilde{F}(\theta)) , \quad (3.25)
\]

with

\[
\tilde{F}(\theta) = 1 \otimes \sum_{a \in D} e^{i\theta_a} P_a F_{|D|} . \quad (3.26)
\]

Obviously,

\[
U(\theta^{(1)}) \ldots U(\theta^{(n)}) = \sum_{a_1, \ldots, a_n \in D} T_{a_1 + \ldots + a_n} e^{i(\theta^{(1)}_a + \ldots + \theta^{(n)}_a)} \otimes (P_{a_1} F_{|D|} \ldots P_{a_n} F_{|D|}) \quad (3.27)
\]

As before, we study the mean probability distribution induced by QW-RPS with Fourier coin and we conclude that the cross terms to vanish. It is straightforward to prove (cf. Lemma 2):

Lemma 7.

\[
P_{a_1} F_{|D|} \ldots P_{a_n} F_{|D|} |s\rangle = \frac{\delta_{a_n,|D|}}{|D|^{(n-1)/2}} e^{2\pi i (a_1 + \ldots + a_{n-1} - a_n)/|D|} |a_1\rangle \quad (3.28)
\]

Now the probability distribution after \(n \) steps, with the initial state \(|0\rangle \otimes |s\rangle \) and the sequence \(\Theta \) of random phases is (cf. Eq. 3.17)

\[
P_F(\Theta, x, n) = \sum_{a \in D^n} |\Xi_F(a)|^2 + \sum_{a \neq a'} e^{i(\theta(a) - \theta(a'))} \Xi_F(a) \Xi_F(a')^* \langle a_1 | a'_1 \rangle , \quad (3.29)
\]

where

\[
\Xi_F(a_1, \ldots, a_n) = \frac{\delta_{a_n,|D|}}{|D|^{(n-1)/2}} e^{2\pi i (a_1 + \ldots + a_{n-1} - a_n)/|D|} . \quad (3.30)
\]

By averaging over all sequences of random phases \(\Theta \) (cf. Eq. (3.17)) the second term in Eq. (3.29) vanishes and we get

\[
\langle P_F(\Theta, x, n) \rangle_\Theta = \frac{1}{|D|^{n-1}} \sum_{a \in \Xi} \delta_{a_n,|D|} . \quad (3.31)
\]

Notice that despite the symmetric initial coin state \(|s\rangle \), there is an asymmetry manifested in the term \(\delta_{a_n,|D|} \). This is due to the fact that after the initial coin toss, the coin register is in the state \(F_{|D|} |s\rangle = ||D|| \). We can symmetrize the evolution by taking the initial coin state to be \(F_{|D|} |s\rangle = ||D|| \). Then we can compute that the probability distribution has the same form as Eq. (3.29), with \(\Xi_F \) replaced by

\[
\Xi_{F,\text{sym}} = \frac{1}{|D|^{n/2}} e^{2\pi i (a_1 + \ldots + a_{n-1} - a_n)} |a_1\rangle \quad (3.32)
\]

yielding the mean probability distribution

\[
\langle P_{F,\text{sym}}(\Theta, x, n) \rangle_\Theta = \frac{1}{|D|^n} \sum_{a \in \Xi} 1 . \quad (3.33)
\]

This is exactly the form for the probability distribution of a (memoryless) CRW, the sum being over all paths from \(0 \) to \(x \), weighed by \(1/|D|^n \).

B. Numerical Results

To complement our analytical results, we plot the dispersion of the average probability distribution of the QW-RPS for the Grover coin:

\[
D_0(D, n) = \left\langle \sum_{x \in Z^n} |x|^2 \text{Tr} \left(P_x |\psi(\Theta, n)\rangle \langle \psi(\Theta, n)| \right) \right\rangle_\Theta . \quad (3.34)
\]

The results are shown in the following figures: in Fig. 1 we plot the dispersion (3.34) as a function of the number of steps for a two-dimensional \((d = 2)\) QW, CRW and QW-RPS, respectively.

Comparing the three corresponding lines we find that the dispersion in the QW grows quadratically with number of steps (see solid/red line in Fig. 1). This is in a sharp contrast to a classical random walk for which the dispersion is a linear function of the number of steps (see dotted/blue line in Fig. 1). The lines for QW-RPS and CRW overlap. The dispersion of either grows linearly with the number of steps \(n \) (see dashed/blue line in Fig. 1).

In Fig. 2 we plot the dispersion (3.34) as a function of number of steps for a three-dimensional \((d = 3)\) QW, CRW and QW-RPS, respectively.
FIG. 1: (Color online) Dispersions of the probability distributions corresponding to the n steps of quantum walk (solid/red line), the (memoryless) classical random walk with equal probabilities of step in any direction (dotted/blue line), and the quantum walk with random phase shifts (dashed/green line) for a two-dimensional system. The initial state of the quantum system is described by a vector $|\psi_0\rangle = |0\rangle \otimes |s\rangle$ and we assume the Grover coin C_G. The quantities for QW-RPS were obtained by generating 50 evolutions of QW-RPS with respective dispersions of probability distributions, and by averaging over them.

As in the two-dimensional case, the dispersion of the probability distribution of the QW grows quadratically. The dispersion of the classical random walk is a linear function of number of steps and it does not depend on the dimension of the random walk. Interestingly enough, the dispersion of the quantum walk with random phase shifts is again a linear function, but unlike in the two-dimensional case, for $d \geq 3$ the linear growth of the dispersion is faster than in the classical case.

The same conclusions can be derived from our simulations of quantum walks in four-dimensional space (see Fig. 3).

In Fig. 4 we plot dispersion of probability distributions for quantum walks with random phase shifts as a number of steps for various dimensions $d = 2, 3, 4$. We generated 50 evolutions of QW-RPS for each dimension, and averaged over the respective dispersion generated by each evolution.

We can conclude, that as the dimension increases, the linear growth of the dispersion also increases.

We have shown that the introduction of random phase shifts causes the transition of a QW to a (quasi-)classical random walk. In our previous discussion we have considered random phases to be uniformly distributed in the interval $[-\pi, \pi]$. Here we briefly analyze a situation when phases of random shifts are distributed according to a normal distribution that is peaked around the phase zero and with the dispersion σ. When the dispersion is zero, (i.e. $\sigma = 0$) we recover the QW (see Fig. 5), while for large σ, we obtain uniform distribution on the interval $[-\pi, \pi]$ and the CRW is obtained. The results are shown in Fig. 5. This analysis clearly shows the quantum-to-classical transition for quantum walks which is generated by random phase shifts. As the phase shifts become more random, the walk becomes more classical.

IV. CONCLUSION

We have shown that by shifting the amplitudes of the coin register in a quantum walk by random phases, we can obtain the classical behavior of the quantum walk. For a Grover coin, the mean probability distribution of such a walk is equivalent to the CRW with memory and a biased coin; for the Fourier coin, the mean probability distribution is equivalent to the memoryless CRW with an unbiased coin (given an unsymmetric initial coin state).

The results underlying Fig. 5 also show how the transition from QW-RPS to CRW occurs when we increase the dispersion of the normal distribution of random phases (for the Grover coin). Our results are in a way complementary to a standard quantization procedure in physics. Specifically, classical dynamics of physical systems can be canonically quantized, so it is clear what is the quantum version of a classical process. On the other hand, quantum walk is not obtained by a canonical quantization procedure from a classical random walk. It is simply de-
The quantities for QW-RPS were obtained by generating 50 evolutions of QW-RPS with respective dispersions of probability distributions, and by averaging over them.

APPENDIX A: DISPERSION OF QW-RPS WITH GROVER COIN

Starting with Eq. 3.20 we can evaluate the dispersion \(\mathcal{D}(D,n) \) of QW-RPS with generalized Grover coin \(G_{r,t} \).

The dispersion reads

\[
\mathcal{D}(D,n) = K \sum_{a \in D^n} |e_{a_1} + \cdots + e_{a_n}|^2 |\Xi(a)|^2 \quad (A1)
\]
with $K = \frac{r - 2}{\sqrt{|D|}} + \sqrt{|D|} |t|$. Turning Eq. (A1) into the recursive relation we obtain

$$
D(D, n) = K \sum_{a \in D^{n+1}} \left\{ |e_{a_1} + \cdots + e_{a_n}|^2
+ 2(e_{a_1} + \cdots + e_{a_n}) \cdot e_{a_{n+1}} + 1 \right\} \equiv 2K(|r|^2 - |t|^2)R_n \quad (A2)
$$

We find that $\sum_{a_{n+1} \in D} |\Xi(a_n, a_{n+1})|^2 = |r|^2 + (|D| - 1)|t|^2 = 1$ for all $a_n \in D$. Hence the first and the last terms in the braces contribute to Eq. (A2) with $D(D, n) + 1$. The middle term has the form

$$
2K \sum_{a \in D^n} |\Xi(a)|^2 (e_{a_1} + \cdots + e_{a_n}) \cdot e_{a_{n+1}} \quad (A3)
$$

In the sum over a_{n+1} in Eq. (A3), we can keep just the terms a_{n+1} such that $e_{a_{n+1}}$ is parallel with $e_{a_1} + \cdots + e_{a_n}$. The remaining a_{n+1}’s cancel out, since for each such a_{n+1} there is a_{n+1}' such that $e_{a_{n+1}} + e_{a_{n+1}'} = 0$. Hence the second term of Eq. (A3) can be rewritten as

$$
2K(|r|^2 - |t|^2) \sum_{a \in D^n} |\Xi(a)|^2 (e_{a_1} + \cdots + e_{a_n}) \cdot e_{a_n} \quad (A4)
$$

The expression for $D(D, n)$ reads as

$$
D(D, n) = D(D, n) + 1 + 2K(|r|^2 - |t|^2)R_n \quad (A5)
$$

with

$$
D(D, 2) = K \sum_{a_1, a_2 \in D} |\Xi(a_1, a_2)|^2 |a_1 + a_2|^2 \quad (A6)
$$

The expression R_n can be rewritten into recursive equation:

$$
R_{n+1} = (|r|^2 - |t|^2)R_n + \frac{1}{K} \quad (A7)
$$

with the initial condition

$$
R_2 = \sum_{a_1, a_2 \in D} |\Xi(a_1, a_2)|^2 (e_{a_1} + e_{a_2}) \cdot e_{a_2} = 2|D||r|^2 + (|D|^2 - |D|) |t|^2 \quad (A8)
$$

Eqs. (A7) and (A8) can be solved to obtain

$$
R_n = \left(\frac{(|r|^2 - |t|^2)^n - 2KR_2 |r|^2 - KR_2 |t|^2 - K R_2 + 1 - 1}{K(|r|^2 - |t|^2 - 1)} \right) \quad (A9)
$$

Solving Eq. (A5) and collecting the terms from Eqs. (A7), (A8), and (A9) we obtain

$$
D(D, n) = \frac{1}{((|r|^2 - |t|^2)(1 - |r|^2 + |t|^2)^2 \times
\times \left\{ (n - 2) \xi - 2(|r|^4 + |t|^4) + 4|r|^2 |t|^2 + (2 + \eta) (|r|^2 - |t|^2)^n + \eta [|t|^2 - |r|^2]^2 \right\} \quad (A10)
$$

where

$$
\xi = |r|^2 - |r|^6 - |t|^2 + 3 |r|^4 |t|^2 - 3 |r|^2 |t|^4 + |t|^6 \quad (A11)
$$

and

$$
\eta = 2 \frac{|r + (|D| - 1)t|}{\sqrt{|D|}} \left(|r|^2 - |t|^2 - 1 \right) \quad (A12)
$$

We may assume that r is real and $t = |t| e^{i\alpha}$. Solving Eqs. (A11) and (A12) we obtain

$$
|t| = \left(\frac{1 - r^2}{|D| - 1} \right)^{1/2} ; \quad (A13)
$$

$$
\alpha = \pm \arccos \left[\frac{1}{2r} (2 - |D|) \left(\frac{1 - r^2}{|D| - 1} \right)^{1/2} \right] \quad (A14)
$$

where $|D| \geq 4$, $\frac{|D| - 2}{|D|} \leq r < 1$. Obviously, $0 \leq |r|, |t| \leq 1$ and $|r|^2 - |t|^2 = \frac{|D|^2 - 1}{|D|^2 - 4}$. Eq. (A10) contains only two terms dependent on n: $(n - 2) \xi$ and $(|r|^2 - |t|^2)^n$. The latter goes to 0 as $n \to \infty$, hence we get $(n > 2)$:

$$
D(D, n) = \frac{1 + |r|^2 - |t|^2}{1 - |r|^2 + |t|^2} (n - 2) + O \left((|r|^2 - |t|^2)^n \right) \quad (A15)
$$

