Gravitational amplitudes in black-hole evaporation: the effect of non-commutative geometry

Elisabetta Di Grezia,1 Giampiero Esposito,1,2 Gennaro Miele,2,1

1Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,
Complesso Universitario di Monte S. Angelo,
Via Cintia, Edificio N’, 80126 Napoli, Italy
2Dipartimento di Scienze Fisiche, Complesso Universitario di Monte S. Angelo,
Via Cintia, Edificio N’, 80126 Napoli, Italy

(Dated: September 22, 2006)

Abstract

Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space-time and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in noncommutative geometry have shown that, in general relativity, the effects of noncommutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained noncommutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework.
I. INTRODUCTION

Theoretical research in black hole physics has witnessed, over the last few years, an impressive amount of new ideas and results on at least four main areas:

(i) The problem of information loss in black holes, after the suggestion in Ref. [1] that quantum gravity is unitary and information is preserved in black hole formation and evaporation.

(ii) The related series of papers in Refs. [2, 3, 4, 5, 6, 7, 8, 9, 10], concerned with evaluating quantum amplitudes for transitions from initial to final states, in agreement with a picture where information is not lost, and the end state of black hole evaporation is a combination of outgoing radiation states.

(iii) The approach in Refs. [11, 12, 13], according to which black holes create instead a vacuum matter charge to protect themselves from the quantum evaporation.

(iv) The work in Ref. [14] where the authors, relying upon the previous findings in Ref. [15], consider a noncommutative radiating Schwarzschild black hole, and find that non-commutativity cures usual problems encountered in trying to describe the latest stage of black hole evaporation.

We have been therefore led to study how non-commutativity would affect the analysis of quantum amplitudes in black hole evaporation performed in Refs. [2, 3, 4, 5, 6, 7, 8, 9, 10]. Following Ref. [14], we assume that non-commutativity of space-time can be encoded in the commutator of operators corresponding to space-time coordinates, i.e. (the integer D below is even)

$$[x^\mu, x^\nu] = i \theta^{\mu\nu}, \quad \mu, \nu = 1, 2, \ldots, D,$$

where the antisymmetric matrix $\theta^{\mu\nu}$ is taken to have block-diagonal form

$$\theta^{\mu\nu} = \text{diag}(\theta_1, \ldots, \theta_{D/2}),$$

with

$$\theta_i = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \forall i = 1, 2, \ldots, D/2,$$

the parameter θ having dimension of length squared and being constant. As shown in Ref. [15], the constancy of θ leads to a consistent treatment of Lorentz invariance and unitarity. The authors of Ref. [14] solve the Einstein equations with mass density of a static, spherically...
symmetric, smeared particle-like gravitational source as (hereafter we work in $G = c = \hbar = 1$
units)
$$
\rho_\theta(r) = \frac{M}{(4\pi \theta)^{\frac{3}{2}}} e^{-\frac{r^2}{4\theta}},
$$
which therefore plays the role of matter source. Their resulting spherically symmetric metric is
$$
ds^2 = -\left[1 - \frac{4M}{r\sqrt{\pi}} \gamma\left(\frac{3}{2}, \frac{r^2}{4\theta}\right)\right] dt^2 + \left[1 - \frac{4M}{r\sqrt{\pi}} \gamma\left(\frac{3}{2}, \frac{r^2}{4\theta}\right)\right]^{-1} dr^2
+ r^2(d\Theta^2 + \sin^2\Theta d\phi^2),
$$
where we use the lower incomplete gamma function \[14\]
$$
\gamma\left(\frac{3}{2}, \frac{r^2}{4\theta}\right) \equiv \int_0^{\frac{r^2}{4\theta}} \sqrt{t} e^{-t} dt.
$$
In this picture, we deal with a mass distribution
$$
m(r) \equiv \frac{2M}{\sqrt{\pi}} \gamma\left(\frac{3}{2}, \frac{r^2}{4\theta}\right),
$$
while M is the total mass of the source \[14\]. This mass function satisfies the equation
$$
m'(r) = 4\pi r^2 \rho_\theta(r),
$$
formally analogous to the general relativity case \[10\].

The work in Refs. \[2, 3, 4, 5, 6, 7, 8, 9, 10\] studies instead the quantum-mechanical
decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat
space-time and weak radiation at a very late time. The spin-2 gravitational perturbations
split into parts with odd and even parity, and one can isolate suitable variables which can
be taken as boundary data on a final spacelike hypersurface Σ_F. The main idea is then
to consider a complexified classical boundary-value problem where T is rotated into the
complex: $T \rightarrow |T|e^{-i\alpha}$, for $\alpha \in]0, \pi/2 [$, and evaluate the corresponding classical Lorentzian
action $S^{(2)}_{\text{class}}$ to quadratic order in metric perturbations. The genuinely Lorentzian quantum
amplitude is recovered by taking the limit as $\alpha \rightarrow 0^+$ of the semiclassical amplitude $e^{iS^{(2)}_{\text{class}}}$
\[2, 6, 10\].

Section II studies the differential equations obeyed by radial modes within the framework
of the adiabatic approximation, and Sec. III obtains the resulting orthogonality relation
in the presence of a non-vanishing non-commutativity parameter θ. Section IV derives the
effect of θ on the expansion of the pure-gravity action functional, which can be used in the evaluation of quantum amplitudes along the lines of Refs. \[2\]-\[10\]. Absorption and emission spectra of a non-commutative Schwarzschild-like black hole are studied in Sec. V, while concluding remarks are presented in Sec. VI, and relevant details are given in the Appendix.

II. EQUATIONS FOR RADIAL MODES

The analysis in Ref. [10] holds for any spherically symmetric Lorentzian background metric

$$ds^2 = -e^{b(r,t)}dt^2 + e^{a(r,t)}dr^2 + r^2(d\Theta^2 + \sin^2 \Theta d\phi^2),$$

(8)

the even modes $\xi_{2lm}^{(+)}(r,t)$ and odd modes $\xi_{2lm}^{(-)}(r,t)$ being built from a Fourier-type decomposition, i.e. \[10\]

$$\xi_{2lm}^{(+)}(r,t) = \int_{-\infty}^{\infty} dk \, d_{2klm}^{(+)}(r) \frac{\sin kt}{\sin kT},$$

(9)

and

$$\xi_{2lm}^{(-)}(r,t) = \int_{-\infty}^{\infty} dk \, d_{2klm}^{(-)}(r) \frac{\cos kt}{\sin kT},$$

(10)

where the radial functions $\xi_{2kl}^{(\pm)}$ obey the following second-order differential equation:

$$e^{-a} \frac{d}{dr} \left(e^{-a} \frac{d\xi_{2kl}^{(\pm)}}{dr} \right) + \left(k^2 - V_{l}^{\pm}(r) \right) \xi_{2kl}^{(\pm)} = 0,$$

(11)

where, on defining $\lambda \equiv \frac{(l+2)(l-1)}{2}$, the potential terms are given by \[10\]

$$V_{l}^{+}(r) = e^{-a(r,t)} \frac{2[l^2(\lambda + 1)r^3 + 3\lambda^2 m r^2 + 9m^2 r + 9m^3]}{r^3(\lambda r + 3m)^2},$$

(12)

and

$$V_{l}^{-}(r) = e^{-a(r,t)} \left(\frac{l(l + 1)}{r^2} - \frac{6m}{r^3} \right),$$

(13)

respectively. In the expansion of the gravitational action to quadratic order, it is of crucial importance to evaluate the integral

$$I(k, k', l, R) \equiv \int_0^R e^{a(r,t)} \xi_{2kl}^{(+)}(r) \xi_{2kl'}^{(+)}(r) dr,$$

(14)

since \[10\] (see Appendix)

$$S_{\text{class}}^{(2)}[(h^{(\pm)})_{lm}] = \pm \frac{1}{32 \pi} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \frac{(l-2)!}{(l+2)!} \int_0^R e^a \xi_{2lm}^{(\pm)} \left(\frac{\partial}{\partial t} \xi_{2tm}^{(\pm)*} \right)_{t=T} dr.$$

(15)
For this purpose, we bear in mind the limiting behaviours

\[\xi_{2kl}^{(\pm)} \sim \text{const} \times (kr)^{l+1} + O((kr)^{l+3}) \text{ as } r \to 0, \tag{16} \]

\[\xi_{2kl}^{(\pm)}(r) \sim z_{2kl}^{(\pm)} e^{ikr_s} + z_{2kl}^{(\pm)*} e^{-ikr_s} \text{ as } r \to \infty, \tag{17} \]

where Eq. (16) results from imposing regularity at the origin, \(r_s \) is the Regge–Wheeler tortoise coordinate

\[r_s(r) \equiv r + 2M \log(r - 2M), \tag{18} \]

while \(z_{2kl}^{(\pm)} \) are complex constants. Indeed, it should be stressed that non-commutativity can smear plane waves into Gaussian wave packets. Thus, in a fully self-consistent analysis, the Fourier modes in Eq. (9), (10), and their asymptotic form in Eq. (16), (17), should be modified accordingly. However, this task goes beyond the aims of the present paper, and we hope to be able to perform these calculations in a future publication.

With this understanding, we can now exploit Eq. (11) to write the equations (hereafter, we write for simplicity of notation \(\xi_{kl}^{(\pm)} \) rather than \(\xi_{2kl}^{(\pm)} \), and similarly for \(V_l^{(\pm)} \))

\[e^a \xi_{kl} \left[e^{-a} \frac{d}{dr} \left(e^{-a} \frac{d}{dr} \xi_{kl} \right) + (k^2 - V_l) \xi_{kl} \right] = 0, \tag{19} \]

\[e^a \xi_{kl} \left[e^{-a} \frac{d}{dr} \left(e^{-a} \frac{d}{dr} \xi_{k'l} \right) + (k'^2 - V_l) \xi_{k'l} \right] = 0. \tag{20} \]

According to a standard procedure, if we subtract Eq. (20) from Eq. (19), and integrate the resulting equation from \(r = 0 \) to \(r = R \), we obtain

\[(k^2 - k'^2) \int_0^R e^a \xi_{kl} \xi_{k'l} dr = \int_0^R \left[\xi_{kl} \frac{d}{dr} \left(e^{-a} \frac{d}{dr} \xi_{k'l} \right) - \xi_{k'l} \frac{d}{dr} \left(e^{-a} \frac{d}{dr} \xi_{kl} \right) \right] dr. \tag{21} \]

The desired integral (14) is therefore obtained from Eq. (21), whose right-hand side is then completely determined from the limiting behaviours in Eqs. (16) and (17), i.e.

\[\int_0^R e^a \xi_{kl} \xi_{k'l} dr = \left\{ \frac{1}{(k^2 - k'^2)} \left[\xi_{kl} e^{-a} \left(\frac{d}{dr} \xi_{k'l} \right) - \xi_{k'l} e^{-a} \left(\frac{d}{dr} \xi_{kl} \right) \right] \right\}^{r=R}_{r=0}, \tag{22} \]

where, on going from Eq. (21) to Eq. (22), we have exploited the vanishing coefficient that weights the integral

\[\int_0^R e^{-a} \left(\frac{d}{dr} \xi_{kl} \right) \left(\frac{d}{dr} \xi_{k'l} \right) dr, \]
resulting from two contributions of equal magnitude and opposite sign. By virtue of Eq. (16), \(r = 0 \) gives vanishing contribution to the right-hand side of Eq. (22), while the contribution of first derivatives of radial functions involves also

\[
\left. \frac{dr_s}{dr} \right|_{r=R} = \frac{R}{(R - 2M)}.
\] (23)

III. GENERALIZED ORTHOGONALITY RELATION

Note now that our metric (5) is a particular case of the spherically symmetric metric (8), since our \(a \) and \(b \) functions are independent of time. More precisely, unlike the full Vaidya space-time, where in the region containing outgoing radiation the mass function varies extremely slowly with respect both to \(t \) and to \(r \), we consider a “hybrid” scheme where the mass function depends on \(r \) only for any fixed value of the non-commutativity parameter \(\theta \). We can therefore write

\[
e^{-a} = 1 - \frac{4M}{r \sqrt{\pi}} \gamma \left(\frac{3}{2}, \frac{r^2}{4M} \right)
\] (24)

in our non-commutative spherically symmetric model, where the function in curly brackets in Eq. (22) reads as

\[
\left(1 - \frac{4M}{R \sqrt{\pi}} \gamma \left(\frac{3}{2}, \frac{R^2}{4M} \right) \right) \frac{R}{(R - 2M)} \frac{1}{(k^2 - k'^2)} \times i \left[(k' - k) z_{kl} z_{k'l'} e^{i(k + k')r_s(R)}
+ (k + k') z_{kl} * z_{k'l'} e^{-i(k + k')r_s(R)} - (k + k') z_{kl} z_{k'l'} e^{i(k - k')r_s(R)} + (k + k') z_{kl} * z_{k'l'} e^{-i(k - k')r_s(R)} \right].
\]

At this stage, we exploit one of the familiar limits that can be used to express the Dirac \(\delta \), i.e.

\[
\lim_{r_s \to \infty} e^{i(k\pm k')r_s} = i\pi \delta(k \pm k'),
\] (25)

to find

\[
\int_0^R e^{\xi_{kl} \xi_{k'l'} dr} = 2\pi |z_{kl}|^2 F(R, \theta) \left(\delta(k + k') + \delta(k - k') \right),
\] (26)

having defined

\[
F(R, \theta) \equiv \frac{R}{(R - 2M)} \left[1 - \frac{4M}{R \sqrt{\pi}} \gamma \left(\frac{3}{2}, \frac{R^2}{4M} \right) \right].
\] (27)
IV. EFFECT OF θ AND EXPANSION OF THE ACTION FUNCTIONAL

Since θ has dimension length squared as we said after Eq. (3), we can define the noncommutativity-induced length scale

$$L \equiv 2\sqrt{\theta}. \quad (28)$$

Moreover, we know that our results only hold in the adiabatic approximation, i.e. when both m' and \dot{m} are very small. The latter condition is obviously satisfied because our mass function in Eq. (7) is independent of time. The former amounts to requiring that (hereafter we set $w \equiv R/L$, while $R_s \equiv 2M$)

$$m'(R) = \frac{2}{\sqrt{\pi}} \frac{R_s}{L} e^{-w^2} w^2 << 1. \quad (29)$$

The condition (29) is satisfied provided that either

(i) $w \to \infty$ or $w \to 0$, i.e. $R >> L$ or $R << L$;

(ii) or at $R = L$ such that

$$m'(R = L) = m'(w = 1) = \frac{2}{\sqrt{\pi}} \frac{R_s}{L} e^{-1} << 1, \quad (30)$$

and hence for $\frac{R_s}{L} << \frac{\sqrt{\pi}}{2}$.

Furthermore, at finite values of the non-commutativity parameter θ, our $w \equiv R/L$ is always much larger than 1 in Eq. (27) if R is very large, and hence we can exploit the asymptotic expansion of the lower incomplete γ-function in this limit [17, 18], i.e.

$$\gamma \left(\frac{3}{2}, w^2 \right) = \Gamma \left(\frac{3}{2} \right) - \Gamma \left(\frac{3}{2}, w^2 \right) \sim \frac{1}{2} \sqrt{\pi} \left[1 - e^{-w^2} \sum_{p=0}^{\infty} \frac{w^{1-2p}}{\Gamma \left(\frac{3}{2} - p \right)} \right]. \quad (31)$$

By virtue of Eqs. (27) and (31), we find

$$F(R, \theta) \equiv F(R, L) \sim 1 + \frac{R_s}{R - R_s} e^{-w^2} \sum_{p=0}^{\infty} \frac{w^{1-2p}}{\Gamma \left(\frac{3}{2} - p \right)}. \quad (32)$$

Equation (32) describes the asymptotic expansion of the correction factor F when $R >> L$.

In the opposite regime, i.e. for θ so large that $(R/L) << 1$ despite that R tends to ∞, one has [18]

$$F(R, L) \sim \frac{R}{(R - R_s)} \left[1 - \frac{4}{3\sqrt{\pi}} \frac{R_s}{R} w^3 \left(1 - \frac{7}{5} w^2 \right) \right]. \quad (33)$$
Last, but not least, if R and L are comparable, the lower-incomplete γ-function in Eq. (27) cannot be expanded, and we find, bearing in mind that $R_s/L << 1$ from Eq. (30), the limiting form

$$F(R, L) \sim 1 + \frac{R_s}{L} \left(1 - \frac{2}{\sqrt{\pi}} \gamma\left(\frac{3}{2}, 1\right)\right) + O((R_s/L)^2). \quad (34)$$

We therefore conclude that a θ-dependent correction to the general relativity analysis in Ref. [10] does indeed arise from non-commutative geometry. In particular, the expansion of the action to quadratic order in perturbative modes takes the form (cf. Ref. [10])

$$S^{(2)}_{\text{class}} = \frac{F(R, L)}{16} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \sum_{P=\pm 1} (l-2)! (l+2)! \int_0^{\infty} dk \, k |z_{2lP}|^2 |a_{2klmP} + P a_{2,-klmP}|^2 \cot kT, \quad (35)$$

where the function $F(R, L)$ (see Eq. (27)) takes the limiting forms (32) and (33), respectively, depending on whether $w >> 1$ or $w << 1$, while $P = \pm 1$ for even (respectively odd) metric perturbations. Our “correction” $F(R, L)$ to the general relativity analysis is non-vanishing provided that one works at very large but finite values of R. In the limit as $R \to \infty$, one has instead

$$\lim_{R \to \infty} F(R, L) = 1, \quad (36)$$

which means that, at infinite distance from the Lorentzian singularity of Schwarzschild geometry, one cannot detect the effect of a non-commutativity parameter.

V. ABSORPTION AND EMISSION SPECTRA OF A NON-COMMUTATIVE SCHWARZSCHILD BLACK HOLE

If general relativity is taken as the fundamental description of gravitational phenomena, particle emission by a black hole follows a Planck-type spectrum [19] while wave absorption by a black hole shows an oscillatory behaviour as a function of frequency [20]. For a Schwarzschild black hole, the two spectra are related by

$$H(\omega) = \frac{\sigma(\omega)}{\epsilon(\omega/T_H - 1)}, \quad (37)$$

where ω is the frequency of the wave and T_H is the temperature for a body emitting thermal radiation, i.e. for the black hole. With this notation, $H(\omega)$ and $\sigma(\omega)$ are the emission and absorption rates, respectively. In Ref. [20] the author has found the following expression for
the total absorption cross-section $\sigma(\omega)$ in the Hawking formula (37):

$$\sigma(\omega) = 27\pi M^2 - 2\sqrt{2}M \frac{\sin(2\sqrt{27}\pi\omega M)}{\omega}, \quad (38)$$

where $\sigma(\omega)$ oscillates about the value $27\pi M^2$ with decreasing amplitude $\frac{2\sqrt{2}M}{\omega}$ and an approximately constant oscillation period.

We can ‘import’ the above result in our case by virtue of the adiabatic approximation exploited in Refs. [2]–[10], and we hence replace T_H in Eq. (37) by the noncommutative black hole temperature T_{HNC} defined as

$$T_{HNC} \equiv -\left(\frac{1}{4\pi} \frac{dg_{00}}{dr} \right)_{r=r_+} = \frac{1}{4\pi r_+} \left[1 - \frac{r_+^3}{4\theta^3/2} \frac{e^{-r_+^2/4\theta}}{\gamma(3/2; r_+^2/4\theta)} \right], \quad (39)$$

where r_+ solves the horizon equation

$$r_+ = 2m(r_+, \theta) \equiv \frac{4M}{\sqrt{\pi}} \left(3, \frac{r_+^2}{4\theta} \right). \quad (40)$$

Equation (38) yields therefore

$$\sigma(\omega) = \frac{27\pi}{4} r_+^2 - \sqrt{2}r_+ \frac{\sin(\sqrt{27}\pi\omega r_+)}{\omega}, \quad (41)$$

where $\sigma(\omega)$ oscillates about $\frac{27\pi}{4} r_+^2$ with decreasing amplitude $\frac{\sqrt{2}r_+}{\omega}$ and a smaller oscillation period depending on θ (note that the θ-dependence in the horizon radius dominates at small θ). Moreover, the emission spectrum of the black hole takes the form

$$H(\omega) = \frac{\sigma(\omega)}{e^{\omega/T_{HNC}} - 1}. \quad (42)$$

In the ‘large radius’ regime $r_+^2/4\theta \gg 1$, i.e. $R \gg L$, Eq. (40) can be solved by iteration [14]. To first order in $M/\sqrt{\theta}$, one finds

$$r_+ = 2M \left(1 - \frac{M}{\sqrt{\pi\theta}} e^{-M^2/\theta} \right). \quad (43)$$

The resulting plot of emission spectrum of the black hole [42] in the ‘large radius’ regime, i.e. if $R \gg L$ ($M \gg L$) is shown in Fig. 1. In Fig. 1 the non-commutativity parameter in Eq. (28) is unable to modify the general relativity shape, although the maximum value attained is smaller than in general relativity.
FIG. 1: Total emission spectrum for a black hole in units $y \equiv H(x)/4M^2$, where $x \equiv 2M\omega$ and $R = 10L$.

VI. CONCLUDING REMARKS

Our paper has investigated the effect of non-commutative geometry on the recent theoretical analysis of quantum amplitudes in black hole evaporation, following the work in Refs. [1], [2]–[10] (for other developments, see for example the recent work in Refs. [21, 22, 23, 24]). For this purpose, we have considered an approximate scheme where the background space-time is static and spherically symmetric, with mass function depending on the radial coordinate only for any fixed value of the non-commutativity parameter θ.

Within this framework, we find that the general relativity analysis of spin-2 amplitudes is modified by a multiplicative factor F defined in Eq. (27). Its limiting forms for $R >> L$ or $R << L$ or $R \approx L$ are given by Eqs. (32), (33) and (34), respectively. Within this framework, unitarity is preserved, and the end state of black hole evaporation is a combination of outgoing radiation states (see section 1).

When the adiabatic approximation here assumed holds, we have also considered approximate formulae for the absorption and emission spectra of a “non-commutative Schwarzschild” black hole. The resulting plot shows that for the total emission spectrum the General Relativity shape is essentially recovered at finite values of θ such that $R >> L$. Within such a scheme, Hawking emission is only important in a certain frequency range [20], but nothing can be said about the end-state of black hole evaporation.

An outstanding open problem is whether one can derive a time-dependent spherically
symmetric background metric which incorporates the effects of non-commutative geometry. This would make it possible to improve the present comparison with the results in Refs. [2]-[10], where the Vaidya space-time was taken as the background geometry. A closer inspection of the effect of a variable surface gravity is also in order, jointly with an assessment of the whole subject of black hole thermodynamics, when “corrected” by non-commutative geometry.

Acknowledgments

The work of G. Esposito and G. Miele has been partially supported by PRIN SINTESI and PRIN FISICA ASTROPARTICELLARE, respectively.

APPENDIX A: FROM REGGE–WHEELER TO ASYMPTOTICALLY FLAT GAUGE

Although we refer the reader to Ref. [10] for the large amount of detailed calculations, we should stress a few important points about the derivation of Eq. (15). The metric perturbations of linearized theory are subject to infinitesimal diffeomorphisms, which are the ‘gauge transformations’ of general relativity [25] (since the infinite-dimensional invariance group of the Einstein theory is indeed the diffeomorphism group).

The Regge–Wheeler (hereafter RW) gauge is not a supplementary condition, but rather an infinitesimal diffeomorphism according to which the odd-parity metric perturbations are modified as follows:

\[h_{0lm}^{(-)RW} = h_{0lm}^{(-)'} = h_{0lm}^{(-)} - \partial_t \Lambda_{lm}, \]
\[h_{1lm}^{(-)RW} = h_{1lm}^{(-)'} = h_{1lm}^{(-)} - \partial_r \Lambda_{lm} + \frac{2 \Lambda_{lm}}{r}, \]
\[h_{2lm}^{(-)RW} = 0 = h_{2lm}^{(-)'} = h_{2lm}^{(-)} + 2 \Lambda_{lm}, \]

where \(h_{0lm}^{(-)} \) occurs in the expansion of the shift vector, while \(h_{1lm}^{(-)} \) and \(h_{2lm}^{(-)} \) occur in the expansion of the odd-parity three-metric perturbations [10].

In our spherically symmetric model of non-commutative gravity, since we rely upon the work in Ref. [14], where the left-hand side of the Einstein equations retains the same
functional form as in general relativity, it remains possible to consider infinitesimal diffeomorphisms formally analogous to Eqs. (A1)–(A3). For a more general framework, that we do not strictly need here, one should instead build a deformation of the algebra of diffeomorphisms, e.g. along the lines of the work in Refs. [26, 27].

In the RW gauge, one of the coupled partial differential equations relating \(h_{1lm} \) and \(h_{0lm} \) is

\[
\partial_t^2 h_{1lm}^{RW} = \partial_r \partial_t h_{0lm}^{RW} - \frac{2}{r} \partial_t h_{0lm}^{RW} + \left[\frac{2 \lambda e^b}{r^2} - \frac{2 e^b}{r} \left(m'' + \frac{2 m' e^a}{r^2} (m' + rm) \right) \right] h_{1lm}^{RW}.
\]

(A4)

To recover the expected fall-off behaviour of metric perturbations, one later performs the asymptotically flat (hereafter AF) gauge transformation, according to which

\[
h_{0lm}^{(-)AF} = 0 = h_{0lm}^{(-)RW} - \partial_t \Lambda_{lm},
\]

(A5)

\[
h_{1lm}^{(-)AF} = h_{1lm}^{(-)RW} - \partial_r \Lambda_{lm} + \frac{2 \Lambda_{lm}}{r},
\]

(A6)

\[
h_{2lm}^{(-)AF} = h_{2lm}^{(-)RW} + 2 \Lambda_{lm} = 2 \Lambda_{lm}.
\]

(A7)

By virtue of Eqs. (A6) and (A4), and neglecting all derivatives of the mass function (this remains legitimate for our mass function in Eq. (7), as is clear from Fig. 2 below), one finds

\[
\partial_t^2 h_{1lm}^{(-)AF} = - \frac{2 \lambda e^b}{r^2} h_{1lm}^{(-)RW},
\]

(A8)

since exact cancellations occur of the coefficients of \(\partial_t \partial_t \Lambda_{lm} \) and \(\partial_t^2 \Lambda_{lm} \). Moreover, since \(h_{2lm}^{(-)} \) vanishes in the RW gauge (see Eq. (A3)), one finds, for the Zerilli function

\[
Q_{lm}^{(-)RW} \equiv \frac{e^{-a}}{r} \left(h_{1lm}^{(-)RW} + \frac{r^2}{2} \partial_r \frac{h_{2lm}^{(-)RW}}{r} \right) = \frac{e^{-a}}{r} h_{1lm}^{(-)RW}.
\]

(A9)

With our metric (5), one has \(e^b = e^{-a} \), and hence

\[
\partial_t^2 h_{1lm}^{(-)AF} = - \frac{2 \lambda}{r} Q_{lm}^{(-)RW},
\]

(A10)

in complete analogy with the general relativity analysis in Ref. [10]. Equation (A10) is in turn used to prove the desired fall-off property

\[
h_{1lm}^{(-)AF}(r, t) = \frac{2 \lambda}{r} \int_{-\infty}^{\infty} dk \frac{a_{klm}^{(-)}}{k^2} Q_{kl}^{(-)RW} \frac{\sin kt}{\sin kT},
\]

(A11)
after writing [10]...

\[Q_{lm}^{(-)RW} = \int_{-\infty}^{\infty} dk \, c_{klm}^{(-)} Q_{kl}^{(-)RW} \frac{\sin kt}{\sin kT}. \] \hfill (A12)

FIG. 2: Plot of the function \(y \equiv m'' + 2m'e^a(m' + rm)r^{-2} \), with \(m \) defined as in Eq. (7) and \(\theta = 1 \) (hence much smaller than \(R^2 \)).

