We propose an efficient quantum key distribution protocol based on the photon-pair generation from parametric down-conversion, which uses a different post-processing of the data from the conventional protocol. Assuming the use of practical detectors, we analyze the unconditional security of the new scheme and show that it improves the secure key generation rate by several orders of magnitude.

PACS numbers: 03.67.Dd 03.67.-a

Quantum key distribution (QKD) is a promising application of quantum information, with which two distant legitimate users (the sender Alice and the receiver Bob) can share a common random bit string, known as a secret key, with negligible leak to an eavesdropper Eve. The first QKD protocol has been proposed by Bennett and Brassard in 1984, which is called BB84. The original BB84 protocol proposes the use of an ideal single photon source, and secure key distribution should be possible up to the distance at which Bob’s photon detection rate and his dark counting rate are comparable. Since such an ideal single photon source is not available today, weak coherent pulses (WCPs) from attenuated lasers are commonly used as a photon source. The WCP has two imperfections, the multi-photon part and the vacuum part. The multi-photon part is vulnerable against photon number splitting (PNS) attacks, and one must reduce the energy of the WCP in order to reduce the fraction of the multi-photon part. This leads to a very low key rate. The existence of the vacuum part simply leads to a reduction of Bob’s photon detection rate, resulting in a shorter distance limit. Recent analyses shows that the former problem can be avoided by randomly mixing pulses with different energies (decoy states). But about half of the pulses are still in the vacuum state, and hence the distance limit falls short of the one with the ideal single photon source.

Another candidate of photon sources within reach of current technology is conditional generation of single photons based on parametric down-conversion (PDC). The state of the photons generated into two modes A and S by PDC can be written as

$$|\Psi\rangle_{AS} = \sum_{n=0}^{\infty} \sqrt{p_n} |n\rangle_A |n\rangle_S,$$

where $|n\rangle$ represents the state of n photons and μ is the average photon-pair rate. If Alice measures the mode A by an ideal photon-number-resolving detector with unit efficiency and selects the cases where just one photon has been detected, she would conditionally obtain an ideal single photon in mode S. But in practice, she must use a threshold (on/off) detector with nonunit efficiency, which cannot distinguish one from two or more photons. In this case, she selects the cases where the detection has occurred (triggered events). The good news is that the dark count rate of current detectors is very low, and we can still neglect the vacuum part of mode S for triggered events (see Fig. 1). Hence this source achieves the same distance limit as the ideal source. On the other hand, the mode S contains multi-photons, which is the same drawback as the WCP. One must decrease μ and thereby reduce the rate of triggering to avoid PNS attacks, leading to a severely low key rate. The remedies for this problem proposed so far are accompanied by introduction of additional complexity to the experimental setup, such as the random amplitude modulation for the use of decoy states and/or replacing Alice’s detector by de-
detector arrays in space or in time domain to improve the photon-number-resolving ability[14, 15].

In this letter, we propose a very simple solution. Nothing is added to the experimental setup of the PDC with a triggering detector. The crux of our new protocol is to run the BB84 protocol regardless of whether Alice’s detector is triggered or not. By comparing the detection rates for the triggered events and the nontriggered events, we can detect the presence of PNS attacks. We assume that threshold detectors are used by Alice and Bob, and derive a formula for the unconditionally secure key rate. Borrowing the parameters in a recent experiment, our calculation shows that the key rate is improved by several orders of magnitude compared to the conventional security analysis.

We first look at the property of Alice’s source composed of PDC with Eq. (1) and a threshold detector DA with efficiency ηA and dark count rate dA. Let qn be the probability of detection (triggering) at DA when n photons are emitted in mode S. Since n photons are emitted also in mode A, we have

\[q_n = 1 - (1 - d_A)(1 - η_A)^n. \] (2)

Then, from Eq. (1), n-photon emission events (at rate \(p_n \)) are divided into the events with triggering (at \(p_n^{(t)} \)) and the events without triggering (at \(p_n^{(nt)} \)), where

\[p_n^{(t)} = p_n q_n, \] (3)
\[p_n^{(nt)} = p_n (1 - q_n), \] (4)

whose distributions typically look like Fig. 1.

Alice changes the polarization of the pulse in mode S according to the BB84 protocol and sends it to Bob. Bob measures this signal by a polarization rotator and a polarization beam splitter followed by two threshold detectors, as in Fig. 2. We say the signal is ‘detected’ by Bob if at least one of the detectors clicks. When both detectors click, Bob assumes his outcome to be a random bit value. Let \(Q_n \) be the rate of events where Alice emits n photons in mode S and Bob detects the signal. These events are also divided into two groups, the events accompanied by Alice’s triggering (at rate \(Q_n^{(t)} \)) and the rest (at \(Q_n^{(nt)} \)), where

\[Q_n^{(t)} = Q_n q_n, \] (5)
\[Q_n^{(nt)} = Q_n (1 - q_n). \] (6)

Behind these relations lies the fact that the state of PDC in Eq. (1) becomes a direct product once we condition on the photon number n in mode S. Hence there should be no correlations between the triggering at DA and any event occurring in mode S. This fact also ensures that the quantum bit error rate (QBER) \(e_n \) when Alice emits n photons in mode S should be the same whether or not the triggering occurs at DA. Therefore, the overall detection rate \(Q^{(t)} \) and the QBER \(E^{(t)} \) with triggering, and the overall detection rate \(Q^{(nt)} \) and the QBER \(E^{(nt)} \) without triggering are expressed by

\[Q^{(t)} = \sum_{n=0}^{∞} Q_n^{(t)}, \] (7)
\[E^{(t)} = \sum_{n=0}^{∞} \frac{Q_n^{(t)} e_n}{Q^{(t)}}, \] (8)
\[Q^{(nt)} = \sum_{n=0}^{∞} Q_n^{(nt)}, \] (9)
\[E^{(nt)} = \sum_{n=0}^{∞} \frac{Q_n^{(nt)} e_n}{Q^{(nt)}}. \] (10)

These four quantities are observed in the actual protocol, while there is no way to measure directly the contributions from each photon number, except for \(e_0 \), which is always 1/2.

We discuss the security of our protocol by the GLLP formula[16, 17], which is written as follows for the key rate \(R^{(t)} \) with triggering:

\[R^{(t)} = q(-Q(t) f(E(t)) H_2(E(t)) + Q_0^{(t)} + Q_1^{(t)} [1 - H_2(e_1)]). \] (11)

The formula has recently been proved[18] to be valid even if Bob’s detection is made by threshold detectors as in Fig. 2 as long as the two detectors have the same efficiency. Here \(q(=1/2) \) is the protocol efficiency, \(f(E) \) is the error correction efficiency, and \(H_2(E) \) is the binary entropy function. Since \(Q_0^{(t)} \), \(Q_1^{(t)} \), and \(e_1 \) are not exactly determined in the actual protocol, we must adopt the worst value of \(R^{(t)} \) in the possible range of these parameters.

In the conventional protocol, we only observe \(Q^{(t)} \) and \(E^{(t)} \). In this case, we rely on the obvious inequality

\[Q^{(t)} \leq p_n^{(t)} \]

to obtain an upper bound on the multi-photon contribution

\[Q^{(t)}_{\text{multi}} = \sum_{n=2}^{∞} Q_n^{(t)}. \] This bound is meaningful only when \(Q^{(t)} > p_n^{(t)} \).
Since the scaling to μ and the channel transmission η_c is $Q^{(t)} \sim O(\eta_c \mu)$ and $p_{\text{intr}}^{(t)} \sim O(\mu^2)$, we have to choose $\mu \sim O(\eta_c)$ and hence $R^{(t)} \sim O(\eta_c^2)$ at best, which means a rapid decrease of the key rate against the distance [see Fig. 3 (f) below].

Now we will show that observation of nontriggered events, $Q^{(\text{nt})}$ and $E^{(\text{nt})}$, leads to a significant improvement of the key rate. The crucial relation is

$$ Q_n^{(t)} = r_n Q_n^{(\text{nt})}, \quad (12) $$

where $r_n \equiv q_n/(1 - q_n) = p_n^{(t)}/p_n^{(\text{nt})}$. r_n is determined by Alice’s parameters μ, η_A, and d_A, and cannot be altered by Eve. From Eq. (2), we see

$$ 0 \leq r_0 < r_1 < r_2 < r_3 \cdots \quad (13) $$

By comparing $r \equiv Q^{(t)}/Q^{(\text{nt})}$ with r_n’s, we have a clue about the distribution $Q_n^{(t)}$ over the photon number. The mechanism can be explained in two different ways. If we assume Alice’s measurement by D_A occurs earlier, then it looks as if she randomly switches between two distributions, $\{p_n^{(t)}\}$ and $\{p_n^{(\text{nt})}\}$. Just as in the decoy state methods [10, 11], comparing r and $r_n = p_n^{(t)}/p_n^{(\text{nt})}$ gives a clue about the PNS attacks. If we assume Alice’s measurement occurs after Bob’s detection, we notice that the photon number distribution at mode A conditioned on Bob’s detection is proportional to Q_n. Hence Alice physically possesses the distribution about which she wants to learn, and she makes a measurement by D_A. The averaged rate $Q^{(t)}/(Q^{(\text{nt})} + Q^{(t)})$ should then be compared with q_n, which is equivalent to the comparison between r and $r_n = q_n/(1 - q_n)$.

The remaining question is whether such a clue is enough to improve the key rate significantly. In the decoy state methods, we can tailor the number and the amplitudes of decoy states at will, but here we have no such freedom except for the strength μ of PDC. This is answered by conducting a quantitative analysis as follows. From Eqs. (12) and (13), we have $Q_0^{(t)} = r_0 Q_0^{(\text{nt})}$, $Q_1^{(t)} = r_1 Q_1^{(\text{nt})}$ and $Q_n^{(t)} \geq r_2 Q_n^{(\text{nt})}$ for $n \geq 2$. Putting these into Eq. (7) and using Eq. (6), we obtain the minimum value of $Q_1^{(\text{nt})}$ as a function of the only remaining unknown parameter $x \equiv Q_0^{(\text{nt})}/Q^{(\text{nt})}$:

$$ \frac{Q_1^{(\text{nt})}}{Q^{(\text{nt})}} \geq \frac{r_2 - r - (r_2 - r_0)x}{r_2 - r_1} \equiv \xi(x). \quad (14) $$

From Eqs. (5) and (12) with $c_0 = 1/2$, an upper bound on e_1 is given by

$$ e_1 \leq \left[Q^{(t)} E^{(t)} - Q_0^{(t)} e_0 / Q_1^{(t)} \right] \leq \frac{2r E^{(t)} - r_0 x}{2r_1 \xi(x)} \equiv \epsilon_1(x). \quad (15) $$

In a similar way, from Eq. (10), we have another bound

$$ e_1 \leq \frac{2E^{(\text{nt})} - x}{2\xi(x)} \equiv \epsilon_{\text{nt}}(x) \quad (16) $$

Combining the two bounds, we have

$$ e_1 \leq \epsilon(x) \equiv \min\{\epsilon_1(x), \epsilon_{\text{nt}}(x)\}. \quad (17) $$

Consequently, in the limit of large block size with which the estimation errors are negligible, the key rate from the triggered events is given by

$$ R^{(t)}/q = -Q^{(t)} f(E^{(t)})H_2(E^{(t)}) + Q^{(\text{nt})} \min \{r_0 x + r_1 \xi(x) \} \{1 - H_2(\epsilon(x))\}, \quad (18) $$

where the minimum is taken over the range $0 \leq x \leq \min\{2E^{(t)}/r_0, 2E^{(\text{nt})}\}$. This minimization should be numerically calculated in general, and we give examples later. Before that, we here discuss the scaling of the key rate $R^{(\text{both})}$ against the channel transmission η_c. If the distance is not so large and the contribution of the dark countings of Bob’s detectors are negligible, the error rates $E^{(t)}$ and $E^{(\text{nt})}$ are almost independent of η_c. The detection rates $Q^{(t)}$ and $Q^{(\text{nt})}$ are both proportional to η_c, and their ratio r is also independent of η_c. Then, the functions $\xi(x)$, $\epsilon_1(x)$, and $\epsilon_{\text{nt}}(x)$ are independent of η_c, and hence the key rate scales as $R^{(\text{both})} \sim O(\eta_c^2)$. When the distance is not so large, we may produce a secret key also from the nontriggered events. In this case, it is more efficient when the error reconciliation is separately applied to the triggered events and to the nontriggered events, but the privacy amplification is applied together, namely, after the two reconciled key is concatenated. The key rate $R^{(\text{both})}$ in this strategy is given by

$$ R^{(\text{both})}/q = -Q^{(t)} f(E^{(t)})H_2(E^{(t)}) - Q^{(\text{nt})} f(E^{(\text{nt})})H_2(E^{(\text{nt})}) + Q^{(\text{nt})} \min \{1 + r_0 x \} \{1 + r_1 \xi(x) \} \{1 - H_2(\epsilon(x))\}. \quad (19) $$

The final key rate is thus given by $R = \max\{R^{(\text{both})}, R^{(t)}\}$.

Next, we assume a channel model and show numerical examples of the key rate R as a function of the distance l. Let $\eta \equiv 10^{-\alpha/10}$ be the channel transmission, η_B be the quantum efficiency of Bob’s detectors, and $\eta \equiv \eta_c \eta_B$. The background rate p_d of each detector is the combination of the rates of the dark count and the stray light, which are assumed to happen independently. For simplicity, we assume that both detectors have the same background rate. $Q_n^{(t)}$ is then given by

$$ Q_n^{(t)}/p_n^{(t)} = 1 - (1 - \eta)^n (1 - p_d)^2, \quad (20) $$

and $Q^{(t)}$ is calculated by taking summation. Let e_d be the probability that a photon sent from Alice hits the erroneous detector, which is independent of the length of the quantum channel. Then we have

$$ 2Q_n^{(t)} e_n / p_n^{(t)} = 1 - (1 - \eta)^n (1 - p_d)^2 - (1 - p_d)(1 - \eta e_d)^n(1 - \eta + \eta e_d)^n, \quad (21) $$
and $E^{(t)}$ is calculated by taking summation. $Q^{(nt)}$ and $E^{(nt)}$ are calculated similarly.

The values of the parameters are chosen as follows. Alice may use a non-degenerate PDC and obtain visible and telecom-wavelength photons in mode A and S, respectively. Therefore, we consider the typical silicon avalanche photodiodes as D_A, which have $d_A = 10^{-6}$ and (a) $\eta_A = 0.5$. We also show the case with (b) $\eta_A = 0.1$ to see the dependence on η_A. The remaining parameters are borrowed from the experiment by Gobby et al. 2, which are $\alpha = 0.21$ [dB/km], $p_B = 8.5 \times 10^{-7}$, $\eta_B = 0.045$, $\epsilon_d = 3.3$ [%], and $f(E^{(t)}) = f(E^{(nt)}) = 1.22$. For each distance l, we have chosen the optimum value μ_{opt} for μ so that the key rate is highest, and the result is shown in Fig. 3 as curves (a) and (b). The step at ~ 130 km, more pronounced on curve (b), appears since the non-triggered events cease to contribute to the final key at this distance. Beyond this distance, the difference in η_A causes a slightly low key generation rate for (b). We have also shown [curve (f)] the key rate R_{con} for the conventional analysis with $d_A = 0$ and $\eta_A = 1$. The remaining parameters are chosen to be the same. In comparison to this key rate with $O(\eta_c^2)$ dependence, the key rates in our new protocol scale as $O(\eta_c)$, and the improvement reaches several orders of magnitude as the distance gets larger. Let us emphasize again that the two protocols use exactly the same experimental setup.

The present scheme achieves positive key rates at longer distances than the scheme using WCP with decay states [curves (d) and (e)] 3. At short distances, R is lower than the key rate of WCP because μ_{opt} becomes smaller than that of WCP. For example, μ_{opt} of (d) is 0.48 while that of (a) is 0.19 at 10 km. This may be caused by the higher multi-photon rate of PDC, whose photon number distribution p_n is thermal. However, the present scheme has a positive key gain up to almost the same distances as with an ideal photon source [curve (c)]. The fact that no additional elements are needed in the PDC setup to beat PNS attacks makes it a viable candidate for the practical QKD.

In conclusion, we have proposed an efficient QKD protocol with PDC, which utilizes the events discarded in the conventional PDC protocol to derive tighter bounds on the rate and the QBER of the single-photon part. The only difference between the present and the conventional protocol is the classical data processing. We found that the key rate is significantly improved in the new protocol. The high photon-pair generation rate $\mu \sim 0.2$ in PDC necessary to obtain the high key generation rate is not difficult in current technology, e.g., by using PPLN devices 10.

We thank R. Namiki and F. Takenaga for helpful discussions. This work was supported by 21st Century COE Program by the Japan Society for the Promotion of Science and a MEXT Grant-in-Aid for Young Scientists (B) No. 17740265.

* Electronic address: adachi@qi.mp.es.osaka-u.ac.jp

