Environmental effects on electron spin relaxation in N@C_{60}

John J. L. Morton,1,2 Alexei M. Tyryshkin,3 Arzhang Ardavan,1,2
Kyriakos Pofyryakis,1 S. A. Lyon,3 and G. Andrew D. Briggs1

1Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom
2Clarendon Laboratory, Department of Physics, Oxford University, Oxford OX1 3PU, United Kingdom
3Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

(Dated: November 13, 2006)

We examine environmental effects of surrounding nuclear spins on the electron spin relaxation of the N@C_{60} molecule (which consists of a nitrogen atom at the centre of a fullerene cage). Using dilute solutions of N@C_{60} in regular and deuterated toluene, we observe and model the effect of translational diffusion of nuclear spins of the solvent molecules on the N@C_{60} electron spin relaxation times. We also study spin relaxation in frozen solutions of N@C_{60} in CS_{2}, to which small quantities of a glassing agent, S_{2}Cl_{2} are added. At low temperatures, spin relaxation is caused by spectral diffusion of surrounding nuclear 35,37 Cl spins in the S_{2}Cl_{2}, but nevertheless, at 20 K, T_{2} times as long as 0.23 ms are observed.

PACS numbers: 76.30.-v, 81.05.Tp

I. INTRODUCTION

The N@C_{60} molecule has been known to contain a remarkably well-shielded electron spin [1], prompting several proposals for fullerene-based quantum information processing (QIP) [2, 3]. Electron spin relaxation in N@C_{60} was recently studied in detail in a CS_{2} solvent environment (in which there are no naturally abundant nuclear spins), and found to be primarily limited by a vibrational spin-orbit Orbach mechanism [4]. However, this solvent is not appropriate for temperatures below 160 K: CS_{2} freezes as a polycrystal, leaving regions of high fullerene concentration around grain boundaries. This dramatically increases the local spin concentration, and T_{2} becomes extremely short due to dipolar spin coupling (the so-called instantaneous diffusion effect [3, 6, 7]). For low temperature work, it is therefore necessary to either use a solvent which freezes as a glass (such as toluene), or to add a glassing agent such as S_{2}Cl_{2} (sulphur chloride) to the primary CS_{2} solvent. Both options necessarily involve introducing a significant nuclear spin concentration to the N@C_{60} environment, leading to further potential relaxation pathways.

In this paper, we extend the studies of electron spin relaxation of N@C_{60} to lower temperatures, using a range of different solvent environments. We show how the presence of nuclear spins in the surrounding environment can shorten the relaxation time. Depending on the temperature regime being studied, translation or spectral diffusion of nuclear spins surrounding the N@C_{60} molecule will contribute to electron spin relaxation.

II. MATERIALS AND METHODS

The aggregation (or clustering) of C_{60} in certain solvents and concentrations has been widely reported [8]. Furthermore, the solubilities of C_{60} in toluene and in CS_{2} show a strong temperature dependence, peaking at 280 K and falling rapidly upon further cooling [12]. The result is that the convenient picture of isolated fullerenes in solution is rather naive, being instead a complex, non-monotonic function of temperature, fullerene concentration, choice of solvent, and even time from initial dissolution. For example, in CS_{2} at room temperature the onset of aggregation has been measured to be around 0.06 mg/ml [8]. At concentrations above 0.36 mg/ml, the clusters themselves further agglomerate to form ‘flowerlike’ structures with an open hole in the centre. In toluene, clusters ranging from 3 to 55 fullerenes have been observed over a dilute range of concentrations (0.18 to 0.78 mg/ml) [14]. This clustering can have important consequences on electron spin relaxation rates resulting in a distribution of the relaxation times depending on the location of N@C_{60} within the cluster. An additional complication can arise in samples of higher N@C_{60}/C_{60} purity - if the large C_{60} cluster contains two N@C_{60} molecules within then their relaxation will be strongly affected by the dipole-dipole interaction between two N@C_{60} electron spins. For example, on a sample of 3% N@C_{60}/C_{60} purity, we have observed a decrease in T_{2} with increasing fullerene concentration above about 0.1 mg/ml.

To eliminate uncertainties of C_{60} cluster formation, the diluted solutions with concentrations less than 0.06 mg/ml were used in this study. High-purity (≈ 80%) endohedral N@C_{60} were used to prepare samples in toluene, enabling the use of dilute solutions 2 μg/ml of well-isolated fullerenes which nevertheless provide sufficient signal for pulsed EPR experiments. Solutions were degassed by freeze-pumping in three cycles to remove paramagnetic O_{2}. We observe that while samples

*Electronic address: john.morton@materials.ox.ac.uk
of N@C\textsubscript{60} in CS\textsubscript{2} are stable, the EPR signal from the sample in degassed toluene decayed when exposed to the light. The precise nature of this decay is unknown and possibly occurs via the photo-excited triplet state of the C\textsubscript{60} cage leading to escape of the nitrogen from the cage. Other experimental parameters, including a brief description of the N@C\textsubscript{60} spin system are provided elsewhere \[4\]. T2 and T1 times were obtained using Hahn echo and inversion recovery sequences, respectively.

Given the strong reactivity of S\textsubscript{2}Cl\textsubscript{2}, there was some concern that it might attack the fullerenes in the solution — this dictated the sample preparation procedure adopted. 50 µl samples of N@C\textsubscript{60} (4% purity) in CS\textsubscript{2}, and pure S\textsubscript{2}Cl\textsubscript{2} were degassed in two separate arms of the λ-shaped quartz vessel. The solvents were then mixed and quickly frozen; the resulting mixture contained approximately 25% S\textsubscript{2}Cl\textsubscript{2} by volume (corresponding to 20 mol%).

III. SPIN RELAXATION OF N@C\textsubscript{60} IN TOLUENE SOLUTIONS

When N@C\textsubscript{60} is dissolved in a solution containing nuclear spins (such as the hydrogen atoms of toluene), additional relaxation pathways may be introduced. These arise from fluctuating fields caused by the motion of solvent molecules around the fullerene cage. The use of both regular (hydrogenated) and deuterated toluene as solvents can provide further insights into the effect of local nuclear spins. Figures [1 and 2] show the T1 and T2 times measured for high-purity N@C\textsubscript{60} in toluene solution, as a function of temperature.

The temperature dependence of T\textsubscript{1} in toluene is suggestive of an Orbach relaxation mechanism, similar to reported for N@C\textsubscript{60} in CS\textsubscript{2} \[4\]. However, the slopes of the temperature dependence are markedly different in two solvents. In CS\textsubscript{2} the energy splitting derived from the slope matched well the first excited H\textsubscript{g}(1) vibrational mode of C\textsubscript{60} at 33 meV, and in toluene the slope corresponds to an energy splitting of 60(2) meV which coincides with the second major line seen in the Raman spectra (61 meV), corresponding to the A\textsubscript{g}(1) mode (Figure 1B). Solvent effects have been reported extensively in the Raman spectroscopy of C\textsubscript{60} \[17\], and it is concluded that the nature of the solvent-fullerene interaction can distort the icosahedral symmetry leading to splittings of the H\textsubscript{g} Raman transitions \[17\]. Consistently, the results here can also be attributed to interactions between the cage and the solvent (e.g. a π-stacking arrangement in the case of the aromatic toluene molecule), the transitions involving the H\textsubscript{g}(1) mode may be suppressed, and electron spin relaxation of the endohedral nitrogen takes places more effectively via the higher-energy A\textsubscript{g}(1) squeezing mode.

The T\textsubscript{2} relaxation data in Figure 2 reveal a non-monotonic temperature dependence in contrast to that observed for N@C\textsubscript{60} in CS\textsubscript{2} \[4\]. In CS\textsubscript{2}, the simple relaxation mechanism is due to nuclei spins (protons) of the toluene solvent. In toluene, T\textsubscript{2} diverges noticeably from the T\textsubscript{1} dependence indicating that additional relaxation mechanism must be involved which suppresses T\textsubscript{2} at low temperatures. In the following discussion we argue that this additional relaxation mechanism is due to nuclei spins (protons) of the toluene solvent.

In liquid solutions, solvent molecules can diffuse around N@C\textsubscript{60} and therefore the distance between the electron spin of N@C\textsubscript{60} and the nuclear spins of toluene molecules changes in time. This results in fluctuating hyperfine (contact and dipolar) fields seen by the electron spin and can produce its relaxation. In the hard-sphere approximation, the spin-spin separation varies between a value called the distance of closest approach (d), and infinity. The translation diffusion time, τ\textsubscript{D}, becomes the important correlation time \[10\]:

$$\tau_D = \frac{2d^2}{D(T)}.$$

where $D(T) = D_{\text{C60}}(T) + D_{\text{tol}}(T)$ is the sum of the temperature-dependent diffusion coefficients of the fullerene and toluene molecules. According to common models for diffusion-induced spin relaxation \[17\], \[18\], \[19\], the resulting T\textsubscript{1} and T\textsubscript{2} times are as follows \[10\]:

The only unknown quantities in the above expressions are the nuclear spin concentration \(c(T) \), distance of closest approach \(d \), and the diffusion coefficient \(D(T) \). The temperature dependence of \(^1\text{H}\) concentration in toluene is given in Perry’s Chemical Engineer’s Handbook (7th Ed):

\[
c(T) = (4.089 \cdot 10^{21}) \left(0.26655 \left(1 + \left(1 - \frac{T}{35 \text{K}} \right)^{0.2878} \right) \right),
\]

and varies between about \(4.5 - 5 \cdot 10^{22} \text{ cm}^{-3} \) over the temperature range \(150 - 300 \text{K} \). Evidently, the variation in this parameter is not great and therefore could not explain the temperature dependence of \(T_2 \). It must be \(D(T) \) and its strong temperature dependence that dominates the effect on \(T_2 \).

The self-diffusion coefficient \(D(T) \) of toluene has been studied as a function of temperature [20]. In the temperature range 135 to 330K, the data is a good fit to the following function:

\[
D_{\text{tol}}(T) = 6.1 \cdot 10^{-4} \exp \left(-\frac{1000}{T} \right) \exp \left(-\frac{190}{T} \right)^6
\]

The diffusion coefficient for \(\text{C}_{60} \) can be roughly estimated by the Stokes-Einstein equation:

\[
D_{\text{C}_{60}}(T) = \frac{k_B T}{6\pi\eta a(T)},
\]

where \(a = 0.35 \text{ nm} \) is the radius of the \(\text{N@C}_{60} \) molecule, and \(\eta(T) \) is the solvent viscosity which can also be temperature dependent. However, reports on toluene viscosity only go down to 225K [21], below which one would expect substantial changes in behaviour. As a result, both \(D_{\text{C}_{60}}(T) \) and \(d \) were left as fitting parameters.

To fit the experimental data in Figure 2 we assumed two relaxation processes: the translational diffusion mechanism described above and the Orbach relaxation mechanism which if alone would produce \(T_2 = (2/3) T_1 \), as was found for \(\text{N@C}_{60} \) in CS\(_2\) solution [4]. The individual contribution of each of the two relaxation mechanisms and their overall effect are shown in Figure 2. The best fit was achieved using a diffusion coefficient whose temperature dependence is shown in Figure 3 and \(d = 0.35 \text{ nm} \) (though it was possible to obtain reasonable fits for \(d \) up to about 0.45 nm). The radius of the \(\text{C}_{60} \) molecule is 0.35 nm, so these values for distance of closest approach are reasonable. The best-fit diffusion coefficient of \(\text{C}_{60} \) converges with that predicted by the Stokes-Einstein equation (Eq. 3) for temperatures below 250K, however it deviates by as much as a factor of 10 at higher temperatures (310K).

Finally, evaluating Eq. 2 with the parameters extracted from the study of \(T_2 \), we confirm that the \(T_1 \) times for h-toluene and d-toluene are expected to be equal, as the translational diffusion \(T_1 \) rates are much slower than the intrinsic (Orbach) decay mechanism (see Figure 4).

IV. SPIN RELAXATION OF N@C\(_{60}\) IN A FROZEN SOLUTION

A glass-forming solvent is essential for frozen solution studies of \(\text{N@C}_{60} \), in order to ensure homogeneity of the frozen solution and to avoid clustering of \(\text{N@C}_{60} \). The ideal solvent would also contain a minimal concentration
nuclear spins [5, 22, 23]. While such an ideal solvent has small quantities of sulphur chloride (S\textsubscript{2}Cl\textsubscript{2}) to act as a glassing agent [24]. The addition of 15 mol\% S\textsubscript{2}Cl\textsubscript{2} in CS\textsubscript{2} is sufficient to permit vitrification of small samples. CS\textsubscript{2} has no major isotopes with non-zero nuclear spins, however, S\textsubscript{2}Cl\textsubscript{2} has chlorine whose both major isotopes have nuclear spin I = 3/2 and gyromagnetic ratios of about 4 MHz/T. Therefore, while this mixture is not an optimal solution, it was hoped that the reduced nuclear spin concentration in the mixture solution would permit relatively long decoherence times, not limited by the nuclear spectral diffusion.

The T\textsubscript{1} and T\textsubscript{2} times measured on the central (M\textsubscript{I} = 0) and high-field (M\textsubscript{I} = −1) hyperfine lines are shown in Figure 5 in the temperature range 20 to 165K (below the melting point of the mixture). Starting with the data obtained at M\textsubscript{I} = 0, T\textsubscript{1} has a monotonic temperature dependence, and follows closely that seen in a powder of C\textsubscript{60}:N@C\textsubscript{60}. T\textsubscript{2} shows a minimum at around 100K, which coincides with the glass transition temperature, T\textsubscript{g}, of the solvent mixture (i.e. the point at which molecular diffusion is frozen out).

Two different T\textsubscript{2} times corresponding to the outer (M\textsubscript{S} = ±3/2 : ±1/2) transitions and inner (M\textsubscript{S} = +1/2 : −1/2) transitions can be separated using the ESEEM method described elsewhere [4]. T\textsubscript{2, o} (outer) falls dramatically upon cooling towards T\textsubscript{g}. T\textsubscript{2, i} (inner) reaches a minimum at T\textsubscript{g}, but then rises as the temperature is lowered further. We can now see that the T\textsubscript{2} measured on the central line is indeed the average of the two separate T\textsubscript{2} times (inner and outer), for temperatures above T\textsubscript{g}. Below T\textsubscript{g}, the outer coherences decay sufficiently quickly that they are not detected in the electron spin echo experiment.

The behaviour of T\textsubscript{2, o} may be explained by a ZFS strain throughout the sample. The glassy solvent matrix around the fullerene may impose some distortion of the cage, especially approaching T\textsubscript{g} and below. This would introduce a permanent ZFS which varies between different N@C\textsubscript{60} molecules. Providing all transitions corresponding to one M\textsubscript{I} hyperfine line are excited, such a ZFS strain would not be refocused in the spin echo experiment and appear instead as an additional decay mechanism on the outer coherences.
Molecular diffusion of nuclear spins around N@C_{60} has already been shown to be a relaxation mechanism in toluene samples (see Section III). It is possible that it is this slow diffusion, and its freezing out, which is responsible for the dip in T_2, around T_g. As the temperature is decreased, T_2 falls initially, as described by Eq. 3. However, in the limit of slow diffusion this equation is no longer valid. Molecular motion becomes frozen out and the effect of local impurity spins is better described in terms of spectral diffusion in a solid matrix.

An important relaxation mechanism for electron spins in the solid state is spectral diffusion caused by flip-flops of local nuclear spins, as seen in phosphorous doped silicon [20]. For natural silicon, the electron spin decoherence time due to spectral diffusion from 29Si is about 600 μs. In our mixture of CS$_2$ and S$_2$Cl$_2$, the nuclear spin density, C_n, is about 1.5 times greater, and the product of the nuclear spin and nuclear g factor ($g_n I_n$) of chlorine nuclei is about 1.3 times greater than that for silicon. There are several different models for spectral diffusion, which match experimental data with varying degrees of success [3]. We note that these models predict higher order terms in the echo decay rate, $\exp(-\tau / T_s)^{\frac{n}{2}}$, where $2 \leq n \leq 3$, while all our data show good monoeponential fits. If we assume the contribution to decoherence via spectral diffusion, T_s, goes as

$$T_s \propto (g_n I_n)^{-11/7} C_n^{-1},$$

and make a comparison with the data for natural silicon, we obtain an estimate of $T_s = 315 \mu$s for our system. This value can only be interpreted as a ballpark figure, and as such it is entirely consistent with the data presented in Figure 5. In particular, contact hyperfine interaction is cited as the dominant electron-nuclear spin interaction term in the silicon sample, rather than dipolar coupling. In this case, it is difficult to make an estimate of T_s simply by comparing the concentration and moment of nuclear spins.

V. CONCLUSIONS

In summary, the effect of nuclear spins in the solvent surrounding N@C$_{60}$ on the decoherence time has been demonstrated using two different isotopes of hydrogen. The data is well fit to a model for relaxation by translational diffusion, providing estimates of the diffusion coefficient for C$_60$ in toluene. Decoherence times approaching 0.23 ms were observed at temperatures below 20K in a mixture of CS$_2$ and S$_2$Cl$_2$, demonstrating this to be a good choice of solvent for low-temperature studies on N@C$_{60}$.

VI. ACKNOWLEDGEMENTS

We acknowledge helpful discussions with Mark Sambrook, and thank the Oxford-Princeton Link fund for support. This research is part of the QIP IRC www.qipirc.org (GR/S82176/01). J.J.L.M. is supported by St. John’s College, Oxford. AA is supported by the Royal Society. G.A.B. is supported by the EPSRC (GR/S15808/01). Work at Princeton was supported by the NSF International Office through the Princeton MRSEC Grant No. DMR-0213706 and by the ARO and ARDA under Contract No. DAAD19-02-1-0040.

