CERN Accelerating science

LHCb Detector Performance Papers

Ultimi arrivi:
The LHCb VELO Upgrade module construction / Akiba, K. (NIKHEF, Amsterdam) ; Alexander, M. (Glasgow U.) ; Bertella, C. (Manchester U.) ; Biolchini, A. (NIKHEF, Amsterdam) ; Bitadze, A. (Manchester U.) ; Bogdanova, G. (Higher Sch. of Economics, Moscow) ; Borghi, S. (Manchester U.) ; Bowcock, T.J.V. (Liverpool U.) ; Bridges, K. (Liverpool U.) ; Brock, M. (Oxford U.) et al.
The LHCb detector has undergone a major upgrade for LHC Run 3. This Upgrade I detector facilitates operation at higher luminosity and utilises full-detector information at the LHC collision rate, critically including the use of vertex information. [...]
arXiv:2404.13615; LHCb-DP-2024-001; LHCb-PAPER-2024-001.- 2024-06-17 - 66 p. - Published in : JINST 19 (2024) P06023 Fulltext: 2404.13615 - PDF; Publication - PDF;

Record dettagliato - Record simili
Tracking of charged particles with nanosecond lifetimes at LHCb / LHCb Collaboration
A method is presented to reconstruct charged particles with lifetimes between 10 ps and 10 ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. [...]
arXiv:2403.09483 ; CERN-EP-2024-077 ; LHCb-DP-2023-004.
- 23 p.

Record dettagliato - Record simili
Curvature-bias corrections using a pseudomass method / LHCb Collaboration
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. [...]
arXiv:2311.04670; LHCb-DP-2023-001; CERN-EP-2023-246.- 2024-03-12 - 22 p. - Published in : JINST 19 (2024) P03010 Fulltext: document - PDF; 2311.04670 - PDF;

Record dettagliato - Record simili
Helium identification with LHCb / LHCb Collaboration
The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. [...]
arXiv:2310.05864; CERN-EP-2023-227; LHCb-DP-2023-002.- 2024-02-05 - 23 p. - Published in : JINST 19 (2024) P02010 Fulltext: document - PDF; 2310.05864 - PDF;

Record dettagliato - Record simili
The LHCb upgrade I / LHCb Collaboration
The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. [...]
arXiv:2305.10515; LHCb-DP-2022-002.- 2024-05-23 - 232 p. - Published in : JINST 19 (2024) P05065 Fulltext: document - PDF; 2305.10515 - PDF;
In : The Large Hadron Collider and The Experiments for Run 3

Record dettagliato - Record simili
Graph Clustering: a graph-based clustering algorithm for the electromagnetic calorimeter in LHCb / Canudas, Núria Valls (Ramon Llull U., Barcelona) ; Calvo Gómez, Míriam (Ramon Llull U., Barcelona) ; Vilasís-Cardona, Xavier (Ramon Llull U., Barcelona) ; Ribé, Elisabet Golobardes (Ramon Llull U., Barcelona)
The recent upgrade of the LHCb experiment pushes data processing rates up to 40 Tbit/s. Out of the whole reconstruction sequence, one of the most time consuming algorithms is the calorimeter reconstruction. [...]
arXiv:2212.11061; LHCb-DP-2022-003.- 2023-02-25 - 15 p. - Published in : Eur. Phys. J. C 83 (2023) 179 Fulltext: 2212.11061 - PDF; document - PDF;

Record dettagliato - Record simili
Long-lived particle reconstruction downstream of the LHCb magnet
Charged-particle trajectories are usually reconstructed with the LHCb detector using combined information from the tracking devices placed upstream and downstream of the 4 Tm dipole magnet. [...]
CERN-LHCb-DP-2022-001 ; arXiv:2211.10920.

Record dettagliato - Record simili
Performance of the LHCb RICH detectors during LHC Run 2 / Calabrese, R. (INFN, Ferrara ; U. Ferrara (main)) ; Fiorini, M. (INFN, Ferrara ; U. Ferrara (main)) ; Luppi, E. (INFN, Ferrara ; U. Ferrara (main)) ; Minzoni, L. (INFN, Ferrara ; U. Ferrara (main)) ; Slazyk, I. (INFN, Ferrara ; U. Ferrara (main)) ; Tomassetti, L. (INFN, Ferrara ; U. Ferrara (main)) ; Bartolini, M. (INFN, Genoa ; U. Genoa) ; Cardinale, R. (INFN, Genoa ; U. Genoa) ; Fontanelli, F. (INFN, Genoa ; U. Genoa) ; Petrolini, A. (INFN, Genoa ; U. Genoa) et al.
The performance of the ring-imaging Cherenkov detectors at the LHCb experiment is determined during the LHC Run 2 period between 2015 and 2018. The stability of the Cherenkov angle resolution and number of detected photons with time and running conditions is measured. [...]
arXiv:2205.13400; LHCb-DP-2021-004.- 2022-07-06 - 23 p. - Published in : JINST 17 (2022) P07013 Fulltext: document - PDF; 2205.13400 - PDF;

Record dettagliato - Record simili
Identification of charm jets at LHCb / LHCb Collaboration
The identification of charm jets is achieved at LHCb for data collected in 2015-2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. [...]
arXiv:2112.08435; LHCb-DP-2021-006.- 2022-02-22 - 22 p. - Published in : JINST 17 (2022) P02028 Fulltext: document - PDF; Aaij_2022_J._Inst._17_P02028 - PDF; 2112.08435 - PDF;

Record dettagliato - Record simili
Centrality determination in heavy-ion collisions with the LHCb detector / LHCb Collaboration
The centrality of heavy-ion collisions is directly related to the medium created therein. A procedure to determine the centrality of collisions with the LHCb detector is implemented for lead-lead collisions at $\sqrt{s_{\scriptscriptstyle\text{NN}}}=5\, \mathrm{TeV}$ and lead-neon fixed-target collisions at $\sqrt{s_{\scriptscriptstyle\text{NN}}}=69\, \mathrm{GeV}$. [...]
arXiv:2111.01607; CERN-LHCb-DP-2021-002.- 2022-05-05 - 31 p. - Published in : JINST 17 (2022) P05009 Fulltext: 2111.01607 - PDF; document - PDF;

Record dettagliato - Record simili