PROPOSAL

PRECISE MEASUREMENT OF THE PROTON-ANTIPROTON TOTAL CROSS-SECTION AT THE CERN ISR

U. Becker\textsuperscript{1}, G. Carboni\textsuperscript{3}, V. Cavasinni\textsuperscript{3}, T. Del Prete\textsuperscript{3}, G. Finocchiaro\textsuperscript{4}, P. Grannis\textsuperscript{4}, M. Morganti\textsuperscript{3}, D. Lloyd-Owen\textsuperscript{4}, J. Paradiso\textsuperscript{2} and M. Valdata-Nappi\textsuperscript{3}

CERN\textsuperscript{1}-MIT\textsuperscript{2}- Pisa\textsuperscript{3}-Stony Brook\textsuperscript{4} Collaboration

It is proposed to measure the antiproton-proton total cross-section at the five ISR energies, $\sqrt{s} = 23.5$ GeV to $\sqrt{s} = 62.7$ GeV. The expected precision ($\frac{\Delta \sigma}{\sigma} < 1\%$) will be sufficient to measure the expected increase of $\sigma(pp)$ (1.5 mb) over this energy range and the difference $\sigma_{pp} - \sigma_{p\bar{p}}$ (2.0 to 0.6 mb).

In order to minimize the effects of experimental biases on the latter measurement, the proton-proton total cross-section will be measured with the same apparatus.

The method will be the same as that used to measure the proton total cross-section at the ISR by the Pisa-Stony Brook Collaboration (Experiment R 801) and much of the original equipment will be used. The ISR luminosity will be measured by the Van der Meer method. The addition of a drift chamber system (from exp. R 209) will help to reduce systematic errors on the total cross-section measurement and allow a more precise measurement of the topological cross-sections at multiplicity $n$, $\sigma^n(pp)$ and $\sigma^n(p\bar{p})$, and of several correlation functions.

The detector is symmetric with respect to the interaction point and consists of scintillation counter hodoscopes $H_1 - H_4$, TB and C1O (see figure) and a central drift chamber detector consisting of 136 modules covering the full azimuth down to $7^\circ$ with respect to each beam.