2.3. Dispersion of Interferometric Structures 70
2.3.1. Mirror Dispersion 70
2.3.2. Fabry–Perot and Gires–Tournois Interferometer 73
2.3.3. Chirped Mirrors 80
2.4. Focusing Elements 82
2.4.1. Singlet Lenses 82
2.4.2. Space–Time Distribution of the Pulse Intensity at the Focus of a Lens 86
2.4.3. Achromatic Doublets 91
2.4.4. Focusing Mirrors 92
2.5. Elements with Angular Dispersion 94
2.5.1. Introduction 94
2.5.2. Tilting of Pulse Fronts 95
2.5.3. GVD through Angular Dispersion—General 100
2.5.4. GVD of a Cavity Containing a Single Prism 102
2.5.5. Group Velocity Control with Pairs of Prisms 105
2.5.6. GVD Introduced by Gratings 117
2.5.7. Grating Pairs for Pulse Compressors 120
2.5.8. Combination of Focusing and Angular Dispersive Elements 122
2.6. Wave-Optical Description of Angular Dispersive Elements 124
2.7. Optical Matrices for Dispersive Systems 130
2.8. Numerical Approaches 136
2.9. Problems 136
Bibliography 140

Chapter 3 Light–Matter Interaction 143
3.1. Density Matrix Equations 144
3.2. Pulse Shaping with Resonant Particles 154
3.2.1. General 154
3.2.2. Pulses Much Longer Than the Phase Relaxation Time ($\tau_p > T_2$) 156
3.2.3. Phase Modulation by Quasi-Resonant Interactions 161
3.2.4. Pulse Durations Comparable with or Longer Than the Phase Relaxation Time ($\tau_p \geq T_2$) 165
3.3. Nonlinear, Nonresonant Optical Processes 166
3.3.1. General 166
3.3.2. Noninstantaneous Response 168
3.3.3. Pulse Propagation 170
3.4. Second Harmonic Generation (SHG) 172
 3.4.1. Type I Second Harmonic Generation 173
 3.4.2. Second Harmonic Type II: Equations for Arbitrary Phase Mismatch and Conversion Efficiencies 180
 3.4.3. Pulse Shaping in Second Harmonic Generation (Type II) 183
 3.4.4. Group Velocity Control in SHG through Pulse Front Tilt 185

3.5. Optical Parametric Interaction 188
 3.5.1. Coupled Field Equations 188
 3.5.2. Synchronous Pumping 190
 3.5.3. Chirp Amplification 190

3.6. Third-Order Susceptibility 192
 3.6.1. Fundamentals 192
 3.6.2. Short Samples with Instantaneous Response 195
 3.6.3. Short Samples and Noninstantaneous Response 197
 3.6.4. Counter-Propagating Pulses and Third-Order Susceptibility 199

3.7. Continuum Generation 202

3.8. Self-Focusing 205
 3.8.1. Critical Power 205
 3.8.2. The Nonlinear Schrödinger Equation 208

3.9. Beam Trapping and Filaments 209
 3.9.1. Beam Trapping 209
 3.9.2. Ultrashort Pulse Self-Focusing 212

3.10. Problems 213

Bibliography 215

Chapter 4 Coherent Phenomena 221

4.1. From Coherent to Incoherent Interactions 221

4.2. Coherent Interactions with Two-Level Systems 225
 4.2.1. Maxwell–Bloch Equations 225
 4.2.2. Rate Equations 229
 4.2.3. Evolution Equations 230
 4.2.4. Steady-State Pulses 239

4.3. Multiphoton Coherent Interaction 243
 4.3.1. Introduction 243
 4.3.2. Multiphoton Multilevel Transitions 245
 4.3.3. Simplifying a N-Level System to a Two-Level Transition 258
Chapter 5 Ultrashort Sources I: Fundamentals

5.1. Introduction
 5.1.1. Superposition of Cavity Modes
 5.1.2. Cavity Modes and Modes of a Mode-Locked Laser
 5.1.3. The "Perfect" Mode-Locked Laser
 5.1.4. The "Common" Mode-Locked Laser
 5.1.5. Basic Elements and Operation of a fs Laser

5.2. Circulating Pulse Model
 5.2.1. General Round-Trip Model
 5.2.2. Continuous Model
 5.2.3. Elements of a Numerical Treatment
 5.2.4. Elements of an Analytical Treatment

5.3. Evolution of the Pulse Energy
 5.3.1. Rate Equations for the Evolution of the Pulse Energy
 5.3.2. Connection of the Model to Microscopic Parameters

5.4. Pulse Shaping in Intracavity Elements
 5.4.1. Saturation
 5.4.2. Nonlinear Nonresonant Elements
 5.4.3. Self-Lensing
 5.4.4. Summary of Compression Mechanisms
 5.4.5. Dispersion

5.5. Cavities
 5.5.1. Cavity Modes and ABCD Matrix Analysis
 5.5.2. Astigmatism and Its Compensation
 5.5.3. Cavity with a Kerr Lens

5.6. Problems

Chapter 6 Ultrashort Sources II: Examples

6.1. Synchronous Mode-Locking
6.2. Hybrid Mode-Locking
6.3. Additive Pulse Mode-Locking
 6.3.1. Generalities
 6.3.2. Analysis of APML
6.4. Mode-Locking Based on Nonresonant Nonlinearity 349
6.4.1. Nonlinear Mirror 349
6.4.2. Polarization Rotation 351
6.5. Negative Feedback 352
6.6. Semiconductor-Based Saturable Absorbers 356
6.7. Solid-State Lasers 358
6.7.1. Generalities 358
6.7.2. Ti:sapphire Laser 360
6.7.3. Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF, and Alexandrite 364
6.7.4. Cr:Forsterite and Cr:Cunyite Lasers 366
6.7.5. YAG Lasers 367
6.7.6. Nd:YVO₄ and Nd:YLF 370
6.8. Semiconductor and Dye Lasers 371
6.8.1. Dye Lasers 371
6.8.2. Semiconductor Lasers 374
6.9. Fiber Lasers 378
6.9.1. Introduction 378
6.9.2. Raman Soliton Fiber Lasers 379
6.9.3. Doped Fiber Lasers 380
6.9.4. Mode-Locking through Polarization Rotation 381
6.9.5. Figure-Eight Laser 384

Bibliography 386

Chapter 7 Femtosecond Pulse Amplification 395
7.1. Introduction 395
7.2. Fundamentals 396
7.2.1. Gain Factor and Saturation 396
7.2.2. Shaping in Amplifiers 400
7.2.3. Amplified Spontaneous Emission (ASE) 404
7.3. Nonlinear Refractive Index Effects 406
7.3.1. General 406
7.3.2. Self-Focusing 409
7.3.3. Thermal Noise 410
7.3.4. Combined Pulse Amplification and Chirping 411
7.4. Chirped Pulse Amplification (CPA) 412
7.5. Amplifier Design 414
7.5.1. Gain Media and Pump Pulses 414
7.5.2. Amplifier Configurations 416
7.5.3. Single-Stage, Multipass Amplifiers 418
7.5.4. Regenerative Amplifiers 421
7.5.5. Traveling Wave Amplification 422
10.3. Beam Geometry and Temporal Resolution 494
10.4. Transient Absorption Spectroscopy 497
10.5. Transient Polarization Rotation 500
10.6. Transient Grating Techniques 503
 10.6.1. General Technique 503
 10.6.2. Degenerate Four Wave Mixing (DFWM) 506
10.7. Femtosecond Resolved Fluorescence 509
10.8. Photon Echoes 512
10.9. Zero Area Pulse Propagation 515
10.10. Impulsive Stimulated Raman Scattering 518
 10.10.1. General Description 518
 10.10.2. Detection 520
 10.10.3. Theoretical Framework 522
 10.10.4. Single Pulse Shaping Versus Mode-Locked Train 524
10.11. Self-Action Experiments 526
10.12. Problems 528
Bibliography 529

Chapter 11 Examples of Ultrafast Processes in Matter 531
11.1. Introduction 531
11.2. Ultrafast Transients in Atoms 532
 11.2.1. The Classical Limit of the Quantum Mechanical Atom 532
 11.2.2. The Radial Wave Packet 532
 11.2.3. The Angularly Localized Wave Packet 534
11.3. Ultrafast Processes in Molecules 536
 11.3.1. Observation of Molecular Vibrations 536
 11.3.2. Chemical Reactions 540
 11.3.3. Molecules in Solution 543
11.4. Ultrafast Processes in Solid-State Materials 544
 11.4.1. Excitation across the Band Gap 544
 11.4.2. Excitons 545
 11.4.3. Intraband Relaxation 545
 11.4.4. Phonon Dynamics 547
 11.4.5. Laser-Induced Surface Disordering 549
11.5. Primary Steps in Photo–Biological Reactions 550
 11.5.1. Femtosecond Isomerization of Rhodopsin 550
 11.5.2. Photosynthesis 551
Bibliography 553
Chapter 12 Generation of Extreme Wavelengths
12.1. Generation of Terahertz (THz) Radiation 558
12.2. Generation of Ultrafast X-Ray Pulses 565
 12.2.1. Incoherent Bursts of X-Rays 565
 12.2.2. High Harmonics (HH) and Attosecond Pulse Generation 566
12.3. Generation of Ultrashort Acoustic Pulses 568
12.4. Generation of Ultrafast Electric Pulses 571
Bibliography 575

Chapter 13 Selected Applications
13.1. Imaging 579
 13.1.1. Introduction 579
 13.1.2. Range Gating with Ultrashort Pulses 580
 13.1.3. Imaging through Scatterers 583
 13.1.4. Prospects for Four-Dimensional Imaging 585
 13.1.5. Microscopy 586
13.2. Solitons 590
 13.2.1. Temporal Solitons 590
 13.2.2. Spatial Solitons and Filaments 592
 13.2.3. Spatial and Temporal Solitons 597
13.3. Sensors Based on fs Lasers 598
 13.3.1. Description of the Operation 598
 13.3.2. Inertial Measurements (Rotation and Acceleration) 601
 13.3.3. Measurement of Changes in Index 603
13.4. Stabilized Mode-Locked Lasers for Metrology 609
 13.4.1. Measurement of the Carrier to Envelope Offset (CEO) 610
 13.4.2. Locking of fs Lasers to Stable Reference Cavities 614
13.5. Problem 616
Bibliography 617

Appendix A The Uncertainty Principle 623

Appendix B Phase Shifts on Transmission and Reflection 625
 B.1. The Symmetrical Interface 625
 B.2. Coated Interface between Two Different Dielectrics 626

Appendix C Slowly Evolving Wave Approximation 629